摘要:
Disclosed is a direct-injection spark-ignition engine designed to promote catalyst activation during cold engine operation. A fuel injection timing for a fuel injection period in an compression stroke (second fuel injection period F2) is set to allow a first fuel spray Ga injected from a first spray hole 40a to enter a cavity 34 in a piston crown surface 30, and allow a second fuel spray Gb to impinge against a region of the piston crown surface 30 located closer to an injector than the cavity 34, so as to cause the second fuel spray Gb having a lowered penetration force due to the impingement to be pulled toward the cavity 34 by a negative pressure generated in the cavity 34 as a result of passing of the first fuel spray Ga therethrough. The direct-injection spark-ignition engine can maximally hold an injected fuel spray around a spark plug to reliably stabilize a combustion state in a combustion mode for promoting catalyst activation during cold engine operation, while enhancing combustion efficiency in a homogenous combustion mode during normal engine operation.
摘要:
Disclosed is an internal combustion engine, which has a geometric compression ratio of 13.0 or greater, and a combustion chamber (4) configured to satisfy a condition of S/V2≦0.12 (mm−1) when a radius r of a hypothetical sphere (IS) with its center at an ignition point (CP) of a spark plug (3) is set to satisfy a condition of V2=0.15×V1, where: S (mm2) is an area of an interference surface between the hypothetical sphere (IS) and an inner wall of the combustion chamber (4) in a state when a piston (30) is at its top dead center position; V1 (mm3) is a volume of the combustion chamber 4 in the state when the piston (30) is at the top dead center position; and V2 (mm3) is a volume of a non-interference part of the hypothetical sphere (IS) which is free of interference with the inner wall of the combustion chamber (4) when the piston (30) is at the top dead center position. The internal combustion engine of the present invention can more reliably improve fuel economy.
摘要:
Disclosed is an internal combustion engine (A), which has a valve overlap period (T) during which an intake valve (1) and an exhaust valve (2) are opened, and a geometric compression ratio of 13.0 or greater. The engine (A) is designed to satisfy, at a center timing (Tc) of the valve overlap period (T), a conditional expression: S1≧S2, where S1 is a cross-sectional area of a combustion chamber (4) taken along any selected one of a plurality of mutually parallel hypothetical cutting-planes (IP) each of which extends parallel to a linear reciprocating direction (d1 or d2) of at least one of the intake and exhaust valves (1, 2) and passes through a valve head (1a or 2a) of the at least one of the valves (1, 2), and S2 is an effective opening area defined between the valve head (1a or 2a) and a corresponding valve seat (11a or 12a) in a region on an outward side of the combustion chamber (4) relative to the selected hypothetical cutting-plane (IP). The present invention can reliably improve combusted-gas scavenging efficiency and intake-air charging efficiency.
摘要:
Disclosed is a supercharged direct-injection engine, which comprises a supercharging device (25, 30) for compressing intake air, and an injector 10 for directly injecting fuel into a combustion chamber 5. In the engine, an excess air factor λ as a ratio of an actual air-fuel ratio to a stoichiometric air-fuel ratio, at least in an engine warmed-up mode, is set to 2 or more in the entire engine-load region. Further, compressed self-ignited combustion is performed in a low engine-load region, and a supercharging amount by the supercharging device (25, 30) is increased along with an increase in engine load in a high engine-load region to allow the excess air factor λ to be kept at 2 or more. The engine of the present invention can effectively reduce NOx emission, while improving fuel economy.
摘要:
Various systems and methods are disclosed for controlling an internal combustion engine system having an internal combustion engine, a fuel injector which directly injects fuel into a combustion chamber of the internal combustion engine, and a supercharger which supercharges air into the combustion chamber. One example method comprises, injecting fuel into the combustion chamber multiple times so that a first part of the fuel is self ignited and a last part of the fuel being injected during the compression stroke or later in a cylinder cycle when a desired torque of said internal combustion engine system is in a first range; and increasing a pressure of air which the supercharger charges into the combustion chamber as amount of fuel injected into the combustion chamber during a cylinder cycle increases when the desired torque is in the first range.
摘要:
A system and method of controlling an internal combustion engine are provided. The method may include closing said intake valve at a timing in a first range, which is before a maximum charge closing timing with which an amount of air inducted into said cylinder from said air intake passage would be maximized at a given engine speed, during a cylinder cycle when a desired amount of air to be inducted into said cylinder is less than or equal to a predetermined air amount at the given engine speed. The method may further include closing said intake valve at a timing in a second range, which is after said maximum charge closing timing and separated from said first range during a cylinder cycle, when a desired amount of air to be inducted into said cylinder is greater than said predetermined air amount at the given engine speed.
摘要:
There is provided a spark ignited internal combustion engine having a geometric compression ratio of 13.0 or greater. The engine comprises combustion chambers having a cylinder stroke volume of 0.3 liter or greater, with the spark plug in the chamber ceiling having its spark point in the combustion chamber, and a cavity being formed on the top surface of the piston. At least part of the cavity defines a spherical surface that a hypothetical sphere having its center at the spark point contacts when the piston is at top dead center. The cavity is formed so that V2/V1≧0.31, where V1 is top-dead-center combustion chamber volume, and V2 is the volume of the part of the hypothetical sphere not interfering with the combustion chamber floor or ceiling at top dead center. The flame thus spreads with less interference, shortening combustion duration and reducing fuel consumption.