摘要:
In the hybrid vehicle, a boost converter is controlled to make a post-boost voltage or a voltage on the side of an inverter become a target post-boost voltage corresponding to a target operation point of a motor in accordance with a target post-boost voltage setting map that divides an operation region of the motor into a non-boost region and a boost region when a operation point of the motor is included in the boost region. The target post-boost voltage setting map is prepared so that the non-boost region includes a region in which a loss produced by driving the motor when not boosting the post-boost voltages becomes smaller than the loss produced when boosting the post-boost voltage and the boost region includes a region in which the loss produced when boosting the post-boost voltage becomes smaller than the loss produced when not boosting the post-boost voltage.
摘要:
A vehicle includes a converter for stepping up power provided from a power storage device, and an inverter for converting the power output from converter and outputting it to an alternating-current motor for driving the vehicle. In the vehicle, a rectangular voltage control unit controls the inverter by means of rectangular wave voltage control that is based on a torque command value and the like, so as to control an output torque of the alternating-current motor. A system voltage control unit controls a system voltage, which is an output voltage of the converter. The system voltage control unit lifts a restriction on a system voltage command value based on an accelerator pedal position and the like, and then increases it. When increasing the system voltage command value during the rectangular wave voltage control for the inverter, a cooperative control unit increases the system voltage command value and the torque command value in a cooperative manner.
摘要:
A motor drive control device includes a battery, a converter, an inverter, and a control section for outputting control signals to the converter and the inverter. The control section has a first map and a second map regarding control of the alternating-current motor and further includes a map switching section for switching from control based on the first map to control based on the second map in accordance with conditions of the battery.
摘要:
When a target operation point of either a motor MG1 or a motor MG2 is included in a resonance range specified by operation points of the motor MG1 or the motor MG2 in the occurrence of resonance in a booster converter, a hybrid vehicle controls the booster converter to make the voltage on the side of inverters approach to a preset target boosted voltage that is higher than the voltage on the side of the battery, while controlling the inverters by sine-wave control.
摘要:
In the hybrid vehicle, a boost converter is controlled to make a post-boost voltage or a voltage on the side of an inverter become a target post-boost voltage corresponding to a target operation point of a motor in accordance with a target post-boost voltage setting map that divides an operation region of the motor into a non-boost region and a boost region when a operation point of the motor is included in the boost region. The target post-boost voltage setting map is prepared so that the non-boost region includes a region in which a loss produced by driving the motor when not boosting the post-boost voltages becomes smaller than the loss produced when boosting the post-boost voltage and the boost region includes a region in which the loss produced when boosting the post-boost voltage becomes smaller than the loss produced when not boosting the post-boost voltage.
摘要:
A vehicle includes a converter for stepping up power provided from a power storage device, and an inverter for converting the power output from converter and outputting it to an alternating-current motor for driving the vehicle. In the vehicle, a rectangular voltage control unit controls the inverter by means of rectangular wave voltage control that is based on a torque command value and the like, so as to control an output torque of the alternating-current motor. A system voltage control unit controls a system voltage, which is an output voltage of the converter. The system voltage control unit lifts a restriction on a system voltage command value based on an accelerator pedal position and the like, and then increases it. When increasing the system voltage command value during the rectangular wave voltage control for the inverter, a cooperative control unit increases the system voltage command value and the torque command value in a cooperative manner.
摘要:
There is provided a motor drive control device which allows an improvement in fuel efficiency in terms of electric power while preventing the battery voltage from falling below the lower limit as rectangular wave control is performed. A motor drive control device 10 includes a battery B, a converter 12, an inverter 16, and a control section 20 for outputting control signals to the converter 12 and the inverter 16. The control section 20 has a first map and a second map regarding control of the alternating-current motor. The first map is a map in which a step-up starting point of the converter 12 is set in a higher revolution range than that in the second map, and which thus includes a relatively large rectangular wave control region a3, and the second map is a map for mainly performing pulse width modulation control. The control section 20 further includes a map switching section for switching from control based on the first map to control based on the second map in accordance with conditions of the battery B.
摘要:
When an electric vehicle outputs a torque instruction, firstly, a request torque is acquired and a judged whether the acquired request torque is positive or negative. Regardless of the sign of the request torque, it is judged whether the eco-switch is ON. If the request torque has a positive sign and the eco-switch is OFF, a map A is selected. If the eco-switch is ON, a map B which limits the maximum torque to a low value for the map A is selected. If the request torque has a negative sign, a map C is selected regardless of the eco-switch ON/OFF state and the maximum torque is not limited.
摘要:
When an electric vehicle outputs a torque instruction, firstly, a request torque is acquired and a judged whether the acquired request torque is positive or negative. Regardless of the sign of the request torque, it is judged whether the eco-switch is ON. If the request torque has a positive sign and the eco-switch is OFF, a map A is selected. If the eco-switch is ON, a map B which limits the maximum torque to a low value for the map A is selected. If the request torque has a negative sign, a map C is selected regardless of the eco-switch ON/OFF state and the maximum torque is not limited.
摘要:
By the vehicle controller of the present invention, when the economy mode is selected by a driver, boosting by a converter is limited and output torque of a motor is limited. Even in the economy mode, however, if the driver requests large torque, either the limit on boosting or the limit on output torque is cancelled. As a result, a vehicle controller for a vehicle including a battery, a converter boosting/lowering the battery voltage and a motor operating with the power from the converter is provided, by which unnecessary power consumption is reduced and the torque requested by the driver can be generated.