摘要:
In the hybrid vehicle, a boost converter is controlled to make a post-boost voltage or a voltage on the side of an inverter become a target post-boost voltage corresponding to a target operation point of a motor in accordance with a target post-boost voltage setting map that divides an operation region of the motor into a non-boost region and a boost region when a operation point of the motor is included in the boost region. The target post-boost voltage setting map is prepared so that the non-boost region includes a region in which a loss produced by driving the motor when not boosting the post-boost voltages becomes smaller than the loss produced when boosting the post-boost voltage and the boost region includes a region in which the loss produced when boosting the post-boost voltage becomes smaller than the loss produced when not boosting the post-boost voltage.
摘要:
In the hybrid vehicle, a boost converter is controlled to make a post-boost voltage or a voltage on the side of an inverter become a target post-boost voltage corresponding to a target operation point of a motor in accordance with a target post-boost voltage setting map that divides an operation region of the motor into a non-boost region and a boost region when a operation point of the motor is included in the boost region. The target post-boost voltage setting map is prepared so that the non-boost region includes a region in which a loss produced by driving the motor when not boosting the post-boost voltages becomes smaller than the loss produced when boosting the post-boost voltage and the boost region includes a region in which the loss produced when boosting the post-boost voltage becomes smaller than the loss produced when not boosting the post-boost voltage.
摘要:
When an electric vehicle outputs a torque instruction, firstly, a request torque is acquired and a judged whether the acquired request torque is positive or negative (S10) Regardless of the sign of the request torque, it is judged whether the eco-switch is ON (S12, S14) If the request torque has a positive sign and the eco-switch is OFF, a map A is selected (S20). If the eco-switch is ON, a map B which limits the maximum torque to a low value for the map A is selected (S22). If the request torque has a negative sign, a map C is selected regardless of the eco-switch ON/OFF state and the maximum torque is not limited (S24).
摘要:
When an electric vehicle outputs a torque instruction, firstly, a request torque is acquired and a judged whether the acquired request torque is positive or negative. Regardless of the sign of the request torque, it is judged whether the eco-switch is ON. If the request torque has a positive sign and the eco-switch is OFF, a map A is selected. If the eco-switch is ON, a map B which limits the maximum torque to a low value for the map A is selected. If the request torque has a negative sign, a map C is selected regardless of the eco-switch ON/OFF state and the maximum torque is not limited.
摘要:
When an electric vehicle outputs a torque instruction, firstly, a request torque is acquired and a judged whether the acquired request torque is positive or negative. Regardless of the sign of the request torque, it is judged whether the eco-switch is ON. If the request torque has a positive sign and the eco-switch is OFF, a map A is selected. If the eco-switch is ON, a map B which limits the maximum torque to a low value for the map A is selected. If the request torque has a negative sign, a map C is selected regardless of the eco-switch ON/OFF state and the maximum torque is not limited.
摘要:
By the vehicle controller of the present invention, when the economy mode is selected by a driver, boosting by a converter is limited and output torque of a motor is limited. Even in the economy mode, however, if the driver requests large torque, either the limit on boosting or the limit on output torque is cancelled. As a result, a vehicle controller for a vehicle including a battery, a converter boosting/lowering the battery voltage and a motor operating with the power from the converter is provided, by which unnecessary power consumption is reduced and the torque requested by the driver can be generated.
摘要:
By the vehicle controller of the present invention, when the economy mode is selected by a driver, boosting by a converter is limited and output torque of a motor is limited. Even in the economy mode, however, if the driver requests large torque, either the limit on boosting or the limit on output torque is cancelled. As a result, a vehicle controller for a vehicle including a battery, a converter boosting/lowering the battery voltage and a motor operating with the power from the converter is provided, by which unnecessary power consumption is reduced and the torque requested by the driver can be generated.
摘要:
When an electric vehicle outputs a torque instruction, firstly, a request torque is acquired and a judged whether the acquired request torque is positive or negative (S10) Regardless of the sign of the request torque, it is judged whether the eco-switch is ON (S12, S14) If the request torque has a positive sign and the eco-switch is OFF, a map A is selected (S20). If the eco-switch is ON, a map B which limits the maximum torque to a low value for the map A is selected (S22). If the request torque has a negative sign, a map C is selected regardless of the eco-switch ON/OFF state and the maximum torque is not limited (S24).
摘要:
In response to a starting instruction of an engine 22 at a gearshift position of a gearshift lever 81 set to a parking position, the engine 22 and motors MG1 and MG2 are controlled to motor and start the engine 22 with output of a torque from the motor MG2 to keep a rotational position of a rotor in the motor MG2 at a preset reference position. This arrangement enables the engine 22 to be motored and started even in the state of separation of a ring gear shaft 32a from a driveshaft 36 by means of a transmission 60 and locking of drive wheels 39a and 39b by means of a parking lock mechanism 90.
摘要:
In response to a starting instruction of an engine 22 at a gearshift position of a gearshift lever 81 set to a parking position, the engine 22 and motors MG1 and MG2 are controlled to motor and start the engine 22 with output of a torque from the motor MG2 to keep a rotational position of a rotor in the motor MG2 at a preset reference position. This arrangement enables the engine 22 to be motored and started even in the state of separation of a ring gear shaft 32a from a driveshaft 36 by means of a transmission 60 and locking of drive wheels 39a and 39b by means of a parking lock mechanism 90.