Abstract:
Methods and systems are disclosed for calibrating a crane for crane geometry. A Global Navigation Satellite System (GNSS) receiver antenna is disposed on a point along a boom assembly of the crane, the crane configured to pivot about a pivot point. A working arm of the crane is rotated about the pivot point to at least three different positions. Three locations are determined in a geo-referenced coordinate system of the at least three different positions. A location of the pivot point is determined based on the three locations.
Abstract:
Methods and systems are disclosed for calibrating a crane for crane geometry. A Global Navigation Satellite System (GNSS) receiver antenna is disposed on a point along a boom assembly of the crane, the crane configured to pivot about a pivot point. A working arm of the crane is rotated about the pivot point to at least three different positions. Three locations are determined in a geo-referenced coordinate system of the at least three different positions. A location of the pivot point is determined based on the three locations.
Abstract:
Methods and systems are disclosed for determining a working arm point angle of the crane. A Global Navigation Satellite System (GNSS) receiver antenna is disposed on a point along a boom assembly of the crane configured to pivot about a pivot point. A location of the pivot point is received. A working arm of the crane is rotated about the pivot point to point in a current direction. A current location of the GNSS receiver antenna is determined. A current working arm pointing angle relative to a reference direction for the current direction of the working arm is determined based on the current location of the GNSS receiver antenna and the location of the pivot point.
Abstract:
In a method for refining a position estimate of a low earth orbiting (LEO) satellite a first position estimate of a LEO satellite is generated with a GNSS receiver on-board the LEO satellite. Corrections are received at the LEO satellite. The corrections are processed on-board the LEO satellite such that a corrected LEO satellite position estimate of the LEO satellite is generated for the first position estimate.
Abstract:
A first process and a second process are executed concurrently by one or more hardware processors located in the cellular device and outside of a Global Navigation Satellite System (GNSS) chipset embedded in the cellular device. The first process determines a first set of one or more position fixes based on extracted raw pseudorange information. The second process determines carrier phase smoothed pseudoranges based on carrier phase information and determines a second set of one or more position fixes based on the carrier phase smoothed pseudoranges. One or more of the first set of position fixes are provided to a user while a predetermined amount of carrier phase information is not available for performing carrier phase smoothing. One or more of the second set of position fixes are provided to the user while a predetermined amount of carrier phase information is available for performing carrier phase smoothing.
Abstract:
A radio frequency component receives and digitizes a first plurality of L1 Global Navigation Satellite System (GNSS) signals and a second plurality of L2C GNSS signals from a plurality of GNSS satellites. A software defined GNSS receiver operating on a processor of a cellular telephone separate from the radio frequency component derives carrier phase measurements from the first plurality of L1 GNSS signals and the second plurality of L2C GNSS signals during an epoch. A wireless message from a communication device located at a base location is received conveying pseudorange and carrier measurements derived from the first plurality of L1 GNSS signals from said plurality of GNSS satellites during the epoch. The cellular telephone determines a distance from the base location to said first location.
Abstract:
A known fixed relationship is maintained between an external electronic distance measurement accessory and a mobile data collection platform that are physically coupled together. A light beam axis of the external electronic distance measurement accessory is parallel with an optical axis of an entrance pupil of the mobile data collection platform. The external electronic distance measurement accessory integrates with the mobile data collection platform. The external electronic distance measurement accessory receives control instructions from the mobile data collection platform.
Abstract:
A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw pseudoranges. The raw pseudoranges are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. A position fix is determined based on the raw pseudoranges. Locally measured cellular device movement information is obtained from at least one sensor that is in a known physical relationship with the cellular device. The locally measured cellular device movement information is applied to the position fix.
Abstract:
A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw observables that include raw pseudoranges and carrier phase information. The raw observables are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. Smoothed pseudoranges are provided by smoothing the raw pseudoranges based on the carrier phase information. The accessing, the extracting and the providing are performed by one or more hardware processors located in the cellular device and outside of the GNSS chipset.
Abstract:
A plurality of images are captured by an image capturing device that is an integral part of the mobile data collection platform from at least two different perspectives that depict a point of interest in a scene. Coincident with capture of each of the plurality of images, orientation information is obtained via orientation sensors of the mobile data collection platform, a position fix of an antenna associated with the mobile data collection platform is determined, and a position of an entrance pupil of the image capturing device is calculated. Scale information associated with at least one of the images is captured. Scene data comprises the images, the orientation information and the entrance pupil positions. A three dimensional position of the point of interest at the scene is determined based on photogrammetric image processing of the scene data.