Giant magnetoresistance sensor with stitched longitudinal bias stacks and its fabrication process
    1.
    发明授权
    Giant magnetoresistance sensor with stitched longitudinal bias stacks and its fabrication process 失效
    具有缝合纵向偏置叠层的巨磁电阻传感​​器及其制造工艺

    公开(公告)号:US07187524B2

    公开(公告)日:2007-03-06

    申请号:US11064723

    申请日:2005-02-23

    IPC分类号: G11B5/39 H01F10/32

    摘要: A giant magnetoresistance (GMR) magnetic head that includes a GMR read sensor with a stitched longitudinal bias (LB) stack. The GMR read sensor includes seed, pinning, pinned, spacer, sense and cap layers in a read region, and its seed and pinning layers are extended into two side regions. The LB stack is fabricated on the pinning layer in the two side regions and includes separation, seed and LB layers. The separation layer, preferably made of an amorphous film, separates the pinning layer from the seed and LB layers and thereby prevents unwanted crystalline effects of the pinning layer. Monolayer photoresist patterning and chemical mechanical polishing may be incorporated into the fabrication process of the GMR head to attain uniform thicknesses of the separation, seed and LB layers, and to align the midplane of the LB layer at the same horizontal level as the midplane of the sense layer.

    摘要翻译: 一种巨磁阻(GMR)磁头,其包括具有缝合纵向偏置(LB)堆叠的GMR读取传感器。 GMR读取传感器包括读取区域中的种子,钉扎,固定,间隔物,感测层和盖层,并且其种子和钉扎层延伸到两个侧面区域。 LB堆叠制造在两侧区域的钉扎层上,包括分离,种子和LB层。 优选由非晶膜制成的分离层将钉扎层与种子和LB层分开,从而防止钉扎层的不期望的结晶效应。 可以将单层光致抗蚀剂图案化和化学机械抛光结合到GMR头的制造工艺中以获得分离,种子和LB层的均匀厚度,并且将LB层的中平面对准在与 感觉层。

    Giant magnetoresistance (GMR) read head with reactive-ion-etch defined read width and fabrication process
    2.
    发明授权
    Giant magnetoresistance (GMR) read head with reactive-ion-etch defined read width and fabrication process 失效
    具有反应离子蚀刻定义的读宽度和制造工艺的巨磁电阻(GMR)读头

    公开(公告)号:US06989971B2

    公开(公告)日:2006-01-24

    申请号:US10118407

    申请日:2002-04-05

    IPC分类号: G11B5/39

    摘要: The GMR read head includes a GMR read sensor and a longitudinal bias (LB) stack in a read region, and the GMR read sensor, the LB stack and a first conductor layer in two overlay regions. In its fabrication process, the GMR read sensor, the LB stack and the first conductor layer are sequentially deposited on a bottom gap layer. A monolayer photoresist is deposited, exposed and developed in order to open a read trench region for the definition of a read width, and RIE is then applied to remove the first conductor layer in the read trench region. After liftoff of the monolayer photoresist, bilayer photoresists are deposited, exposed and developed in order to mask the read and overlay regions, and a second conductor layer is deposited in two unmasked side regions. As a result, side reading is eliminated and a read width is sharply defined by RIE.

    摘要翻译: GMR读取头包括读取区域中的GMR读取传感器和纵向偏置(LB)堆栈,并且GMR读取传感器,LB堆叠和两个覆盖区域中的第一导体层。 在其制造过程中,GMR读取传感器,LB叠层和第一导体层依次沉积在底部间隙层上。 沉积,曝光和显影单层光致抗蚀剂以便打开用于定义读取宽度的读取沟槽区域,然后施加RIE以去除读取沟槽区域中的第一导体层。 在剥离单层光致抗蚀剂之后,将双层光致抗蚀剂沉积,曝光和显影以掩盖读取和覆盖区域,并且将第二导体层沉积在两个未掩模的侧面区域中。 结果,消除了侧读,并且通过RIE清晰地定义了读宽度。

    Dual magnetic tunnel junction sensor with a longitudinal bias stack
    4.
    发明申请
    Dual magnetic tunnel junction sensor with a longitudinal bias stack 有权
    具有纵向偏置叠层的双磁性隧道结传感器

    公开(公告)号:US20050061658A1

    公开(公告)日:2005-03-24

    申请号:US10981926

    申请日:2004-11-05

    摘要: A dual magnetic tunnel junction (MTJ) sensor is provided with a longitudinal bias stack sandwiched between a first MTJ stack and a second MTJ stack. The longitudinal bias stack comprises an antiferromagnetic (AFM) layer sandwiched between first and second ferromagnetic layers. The first and second MTJ stacks comprise antiparallel (AP)-pinned layers pinned by AFM layers made of an AFM material having a higher blocking temperature than the AFM material of the bias stack allowing the AP-pinned layers to be pinned in a transverse direction and the bias stack to be pinned in a longitudinal direction. The demagnetizing fields of the two AP-pinned layers cancel each other and the bias stack provides flux closures for the sense layers of the first and second MTJ stacks.

    摘要翻译: 双磁隧道结(MTJ)传感器设置有夹在第一MTJ堆叠和第二MTJ堆叠之间的纵向偏置堆叠。 纵向偏置堆叠包括夹在第一和第二铁磁层之间的反铁磁(AFM)层。 第一和第二MTJ堆叠包括由具有比偏置堆叠的AFM材料更高的阻挡温度的AFM材料制成的AFM层固定的反平行(AP) - 镀层,其允许将AP钉扎层沿横向方向固定, 偏置堆叠沿纵向方向固定。 两个AP钉扎层的去磁场彼此抵消,并且偏置堆叠为第一和第二MTJ堆叠的感测层提供磁通闭合。

    Current-perpendicular-to-plane spin-valve sensor with metallic oxide barrier layer and method of fabrication
    5.
    发明授权
    Current-perpendicular-to-plane spin-valve sensor with metallic oxide barrier layer and method of fabrication 失效
    具有金属氧化物阻挡层的电流垂直于平面的自旋阀传感器及其制造方法

    公开(公告)号:US06731477B2

    公开(公告)日:2004-05-04

    申请号:US09957252

    申请日:2001-09-20

    IPC分类号: G11B539

    摘要: Disclosed is a system and method for forming a current-perpendicular-to-plane (CPP) spin-valve sensor with one or more metallic oxide barrier layers in order to provide a low junction resistance and a high GMR coefficient. In disclosed embodiments, the metallic oxide barrier layers are formed with oxygen-doping/in-situ oxidation processes comprising depositing a metallic film in a first mixture of argon and oxygen gases and subsequent in-situ oxidization in a second mixture of argon and oxygen gases. The exposure to oxygen may be conducted at a low partial oxygen pressure and at a moderate temperature. Smaller, more sensitive CPP spin-valve sensors may be formed through the use of the oxygen-doping/in-situ oxidization processes of the present invention, thus allowing for greater densities of disk drive systems.

    摘要翻译: 公开了一种用于形成具有一个或多个金属氧化物阻挡层的电流垂直平面(CPP)自旋阀传感器以提供低结电阻和高GMR系数的系统和方法。 在所公开的实施例中,金氧化物阻挡层由氧掺杂/原位氧化工艺形成,包括在氩气和氧气的第一混合物中沉积金属膜,随后在氩气和氧气的第二混合物中原位氧化 。 暴露于氧气可以在低的部分氧压力和中等温度下进行。 可以通过使用本发明的氧掺杂/原位氧化方法形成更小,更敏感的CPP自旋阀传感器,从而允许更高密度的磁盘驱动系统。

    Ap-pinned spin valves with enhanced GMR and thermal stability
    6.
    发明授权
    Ap-pinned spin valves with enhanced GMR and thermal stability 失效
    Ap-pined自旋阀具有增强的GMR和热稳定性

    公开(公告)号:US06519120B1

    公开(公告)日:2003-02-11

    申请号:US09632014

    申请日:2000-08-02

    IPC分类号: G11B539

    摘要: An SV sensor with the preferred structure Substrate/Seed/Free/Spacer/Pinned/AFM/Cap where the seed layer is a non-magnetic Ni—Fe—Cr or Ni—Cr film and the AFM layer is preferably Ni—Mn. The non-magnetic Ni—Fe—Cr seed layer results in improved grain structure in the deposited layers enhancing the GMR coefficients and the thermal stability of the SV sensors. The improved thermal stability enables use of Ni—Mn with its high blocking temperature and strong pinning field as the AFM layer material without SV sensor performance degradation from the high temperature anneal step needed to develop the desired exchange coupling.

    摘要翻译: 具有优选结构的SV传感器,其中种子层是非磁性Ni-Fe-Cr或Ni-Cr膜,AFM层优选为Ni-Mn,其中底物/种子/自由/间隔物/固定/ AFM /帽。 非磁性Ni-Fe-Cr种子层导致沉积层中改善的晶粒结构增强了GMR系数和SV传感器的热稳定性。 改进的热稳定性使得具有高阻挡温度和强钉扎场的Ni-Mn作为AFM层材料而不会由于开发所需交换耦合所需的高温退火步骤而降低SV传感器性能。

    Trilayer seed layer structure for spin valve sensor
    7.
    发明授权
    Trilayer seed layer structure for spin valve sensor 失效
    用于自旋阀传感器的三层种子层结构

    公开(公告)号:US06411476B1

    公开(公告)日:2002-06-25

    申请号:US09429525

    申请日:1999-10-28

    IPC分类号: G11B539

    摘要: A trilayer seed layer structure is employed between a first read gap layer and a spin valve sensor for improving the magnetic and giant magnetoresistive properties and the thermal stability. In the spin valve sensor, the trilayer seed layer structure is located between a first read gap layer and a ferromagnetic free layer. The antiferromagnetic pinning layer is preferably nickel manganese (Ni—Mn). The trilayer seed layer structure includes a first seed layer that is a first metallic oxide, a second seed layer that is a second metallic oxide and a third seed layer that is a nonmagnetic metal. A preferred embodiment is a first seed layer of nickel oxide (NiO), a second seed layer of nickel manganese oxide (NiMnOx), and a third seed layer of copper (Cu).

    摘要翻译: 在第一读取间隙层和自旋阀传感器之间采用三层种子层结构,用于改善磁性和巨磁阻特性以及热稳定性。 在自旋阀传感器中,三层种子层结构位于第一读间隙层和铁磁自由层之间。 反铁磁性钉扎层优选为镍锰(Ni-Mn)。 三层种子层结构包括作为第一金属氧化物的第一籽晶层,作为第二金属氧化物的第二籽晶层和作为非磁性金属的第三籽晶层。 优选的实施方案是氧化镍(NiO)的第一种子层,镍锰氧化物(NiMnO x)的第二籽晶层和铜(Cu)的第三种子层。

    Spin valves with high uniaxial anisotropy reference and keeper layers
    8.
    发明授权
    Spin valves with high uniaxial anisotropy reference and keeper layers 失效
    具有高单轴各向异性参考和保持层的旋转阀

    公开(公告)号:US6127053A

    公开(公告)日:2000-10-03

    申请号:US85981

    申请日:1998-05-27

    IPC分类号: G11B5/66

    摘要: An SV sensor having a reference (pinned) layer formed of a first high uniaxial anisotropy ferromagnetic material, such as Co--Fe, and a keeper layer formed of a second high uniaxial anisotropy ferromagnetic material, such as Ni--Fe--Nb. Lapping induced stress in the Co--Fe layer having high positive magnetostriction generates a stress-induced uniaxial anisotropy field in the reference layer resulting in enhanced reference layer magnetization. This uniaxial anisotropy field is capable by itself of maintaining a substantial transverse reference layer saturation even at elevated temperatures. Lapping induced stress in the Ni--Fe--Nb layer having high positive magnetostriction generates a stress-induced uniaxial anisotropy field in the keeper layer providing more uniform magnetization and therefore better flux cancellation. The high electrical resistivity of the Ni--Fe--Nb keeper layer has the further benefit of reducing sense current shunting by the keeper layer.

    摘要翻译: 具有由诸如Co-Fe的第一高单轴各向异性铁磁材料形成的参考(钉扎)层的SV传感器和由第二高单轴各向异性铁磁材料如Ni-Fe-Nb形成的保持层。 在具有高正磁致伸缩的Co-Fe层中的研磨诱导应力在参考层中产生应力诱导的单轴各向异性场,导致增强的参考层磁化强度。 该单轴各向异性场本身即使在升高的温度下也能维持相当大的横向参考层饱和度。 具有高正磁致伸缩性的Ni-Fe-Nb层中的研磨诱导应力在保持层中产生应力诱导的单轴各向异性场,从而提供更均匀的磁化强度,从而提供更好的磁通消除。 Ni-Fe-Nb保持层的高电阻率进一步降低了保持层感应电流分流的好处。

    Spin valves with antiferromagnetic exchange pinning and high uniaxial
anisotropy reference and keeper layers
    9.
    发明授权
    Spin valves with antiferromagnetic exchange pinning and high uniaxial anisotropy reference and keeper layers 失效
    旋转阀具有反铁磁交换钉扎和高单轴各向异性参考和保持层

    公开(公告)号:US6117569A

    公开(公告)日:2000-09-12

    申请号:US85687

    申请日:1998-05-27

    摘要: An SV sensor having a reference (pinned) layer formed of a first high uniaxial anisotropy ferromagnetic material, such as Co--Fe, and a keeper layer formed of a second high uniaxial anisotropy ferromagnetic material, such as Ni--Fe--Nb. Lapping induced stress in the high positive magnetostriction Co--Fe layer generates a uniaxial anisotropy field in the pinned layer resulting in enhanced pinned layer magnetization. This uniaxial anisotropy field adds to the exchange field from an antiferromagnetic layer resulting in a substantially increased pinning field over the pinning field from the exhange interaction alone. The added uniaxial anisotropy field also improves the stability of the SV sensor at elevated temperatures since the uniaxial field is determined by a Curie temperature significantly higher than the blocking temperatures of antiferromagnetic materials. Lapping induced stress in the high positive magnetostriction Ni--Fe--Nb layer generates a uniaxial anisotropy field in the keeper layer providing more uniform magnetization and therefore better flux cancellation. The high electrical resistivity of the Ni--Fe--Nb keeper layer has the further benefit of reducing sense current shunting by the keeper layer.

    摘要翻译: 具有由诸如Co-Fe的第一高单轴各向异性铁磁材料形成的参考(钉扎)层的SV传感器和由第二高单轴各向异性铁磁材料如Ni-Fe-Nb形成的保持层。 在高正磁致伸缩Co-Fe层中的研磨诱导应力在钉扎层中产生单轴各向异性场,导致增强的钉扎层磁化强度。 这种单轴各向异性场从反铁磁层增加到交换场,从而仅在穿越相互作用的相互作用上导致钉扎场上的钉扎场大大增加。 增加的单轴各向异性场还提高了SV传感器在升高的温度下的稳定性,因为单轴场是由显着高于反铁磁材料的阻挡温度的居里温度决定的。 在高正磁致伸缩Ni-Fe-Nb层中的研磨诱导应力在保持层中产生单轴各向异性场,从而提供更均匀的磁化强度,从而提供较好的磁通消除。 Ni-Fe-Nb保持层的高电阻率进一步降低了保持层感应电流分流的好处。

    Magnetoresistive sensor having antiferromagnetic exchange bias
    10.
    发明授权
    Magnetoresistive sensor having antiferromagnetic exchange bias 失效
    具有反铁磁交换偏置的磁阻传感器

    公开(公告)号:US5436778A

    公开(公告)日:1995-07-25

    申请号:US213882

    申请日:1994-03-15

    IPC分类号: G11B5/39

    CPC分类号: G11B5/3903 G11B5/3932

    摘要: A magnetic disk storage system wherein a magnetic includes a magnetoresistive sensor is described. The MR sensor comprises a sputtered layer of ferromagnetic material and a sputtered layer of antiferromagnetic nickel-manganese (Ni-Mn) to provide an exchange coupled longitudinal bias field in the MR element. The antiferromagnetic layer overlays the MR layer and may be patterned to provide the longitudinal bias field only in the end regions of the MR layer. Alternatively, the antiferromagnetic layer can underlay the MR layer with a Zr underlayer to enhance the exchange-coupled field. As initially deposited, the Ni-Mn layer has a face-centered-cubic crystalline structure and exhibits little or no exchange-coupled field. After one annealing cycle at a relatively low temperature, the Ni-Mn layer crystalline structure is face-centered-tetragonal and exhibits increased crystallographic ordering and provides sufficient exchange coupling for the MR element to operate. Addition of chromium to the Ni-Mn alloy provides increased corrosion resistance.

    摘要翻译: 描述了一种磁盘存储系统,其中磁换能器包括磁阻传感器。 MR传感器包括铁磁材料的溅射层和反铁磁镍锰(Ni-Mn)的溅射层,以在MR元件中提供交换耦合的纵向偏置场。 反铁磁层覆盖MR层,并且可以被图案化以仅在MR层的端部区域中提供纵向偏置场。 或者,反铁磁层可以用Zr底层来衬底MR层以增强交换耦合场。 最初沉积时,Ni-Mn层具有面心立方晶体结构,并且表现出很少或没有交换耦合场。 在相对较低温度下的一个退火循环之后,Ni-Mn层晶体结构是面心四面体并且显示出增加的晶体顺序,并且为MR元件提供足够的交换耦合以进行操作。 向Ni-Mn合金中添加铬提高了耐腐蚀性。