摘要:
A novel gate structure and a method of forming the same for a self-aligned contact on a semiconductor substrate. The method includes forming a gate oxide layer on the semiconductor substrate. Then a first conductive layer is formed on the gate oxide layer. Next, a second conductive layer, preferably a refractory metal silicide (e.g. WSix), is formed overlying the first conductive layer. A capping layer is formed overlying the second conductive layer. Then the capping layer is etched to form a patterned capping layer having a lower outside corner. An upper portion of the second conductive layer is selectively dry etched laterally to form a lateral recess under the capping layer to increase etch margin. A lower portion of the second conductive layer is then etched anisotropically down to the first conductive layer along a sidewall approximately vertically aligned with the lower outside corner of the patterned capping layer. The recess has an inward extant from the lower outside corner in a range of between 100-300 Angstroms. Increased etch margin is provided in the gate structure to prevent shorts between contact plugs and gate structures during contact formation.
摘要:
A method for forming CMOS devices on a semiconductor substrate is disclosed in which gate structures are formed within both the core region and the non-core region of the semiconductor substrate. The gate structures include a gate dielectric layer and a gate film stack that includes a conductive layer and an overlying hard mask. The hard mask is then removed from the gate structures in the non-core region. A salicide process is then performed so as to form a silicide layer in the non-core region. A barrier layer is formed that extends over the core region and a pre-metal dielectric film is formed that extends over the barrier layer. A selective etch process is performed so as to form self-aligned contact openings that extend through the pre-metal dielectric film and through the barrier layer in the core region. These openings are then filled with conductive material to form self-aligned contacts in the core region. This produces a CMOS device in the core region that has high device density and includes high-speed CMOS devices the non-core region.
摘要:
A method for forming CMOS devices on a semiconductor substrate is disclosed in which gate structures are formed within both the core region and the non-core region of the semiconductor substrate. The gate structures include a gate dielectric layer and a gate film stack that includes a conductive layer and an overlying hard mask. The hard mask is then removed from the gate structures in the non-core region. A salicide process is then performed so as to form a silicide layer in the non-core region. A barrier layer is formed that extends over the core region and a pre-metal dielectric film is formed that extends over the barrier layer. A selective etch process is performed so as to form self-aligned contact openings that extend through the pre-metal dielectric film and through the barrier layer in the core region. These openings are then filled with conductive material to form self-aligned contacts in the core region. This produces a CMOS device in the core region that has high device density and includes high-speed CMOS devices the non-core region.
摘要:
The invented method involves separately etching the P and N gate features in a dual-poly gate using dual masks, thereby permitting the etching recipes to be tuned to the differentially responsive P and N materials that form the gate. The method involves a) providing a polysilicon layer of a first type over a first region of a semiconductor substrate; b) providing a polysilicon layer of a second type over a second region of the semiconductor substrate; c) depositing a metallic layer overlying the polysilicon layers in the first and second regions; d) depositing an anti-reflective layer overlying the metallic layer in the first and second regions; e) selectively etching the dielectric hard-mask multi-layer film to form a patterned outer hard-mask multi-layer; f) forming a first photoresist pattern overlying the patterned outer hard-mask multi-layer in the first region; g) first etching the metallic layer and the polysilicon layer of the second type to form a stacked gate structure in the second region; h) forming a second photoresist pattern overlying the patterned outer hard-mask multi-layer in the second region; and i) second etching the metallic layer and the polysilicon layer of the first type to form a stacked gate structure in the first region. Preferably, the first photoresist pattern and the second photoresist pattern define a nominal boundary therebetween, with the patterns having a predefined gap therebetween in a region around the boundary. Alternatively, the dual-mask technique is used on a non-hardmask dual-poly film stack and the top dielectric multi-layer film is replaced by an anti-reflection coating (ARC) film.
摘要:
A structure and method of maximizing the volume of low dielectric constant material between adjacent traces of a conductive interconnect structure. A semiconductor structure includes a semiconductor substrate, a first insulating layer located over the semiconductor substrate, a conductive interconnect layer having a plurality of conductive traces located over the first insulating layer, and a patterned insulating layer located over the patterned interconnect layer. One or more trenches are formed in the upper surface of the first insulating layer. These trenches, which do not extend completely through the first insulating layer, are located between adjacent traces of the interconnect layer. A dielectric material having a low dielectric constant is located in these trenches, and between adjacent traces of the patterned interconnect layer. The trenches advantageously maximize the volume of low dielectric constant material which is located between the traces.
摘要:
A CAM cell array according to embodiments of the present invention include an array of CAM cells, each of the CAM cells comprising a first cell, the first cell including a non-volatile storage element coupled to at least one first data line and a match line; a match line controller coupled to the match line; and a data line controller coupled to the data lines, wherein a write operation is performed by changing a state of the non-volatile storage element by providing data to the at least one data line, wherein a read operation is performed by determining the state of the non-volatile storage element through the at least one data line, and wherein a comparison operation is performed by applying data to the at least one data line and determining a match condition on the match line.
摘要:
The present invention includes SRAM memory cells and methods for forming SRAM cells having reduced soft error rate. The SRAM cell includes a first NMOS transistor and a first PMOS transistor having a common gate, and a second NMOS transistor and a second PMOS transistor having a common gate. A first resistor is electrically coupled on one end to the drains of the first PMOS transistor and the first NMOS transistor; and is electrically coupled on the other end to the common gate of the second NMOS and second PMOS transistors. A second resistor is electrically coupled on one end to the drains of the second PMOS transistor and the second NMOS transistor; and is electrically coupled on the other end to the common gate of the first NMOS transistor and the first PMOS transistor. The added resistor can be embedded in a contact opening such that it does not take up valuable surface area on the semiconductor substrate. Thereby, data loss from soft errors can be avoided while preserving small memory cell size.
摘要:
A method for manufacturing integrated circuits increases the aspect ratio of the electrical conductor members connected to the circuits by increasing the effective height of the conductors, either by forming a thicker layer of conductor material prior to patterning the conductor members, or by adding a capping dielectric layer to the conductor material prior to patterning, or by overetching the dielectric material underlying the conductor members.The structure is then covered by a dielectric layer having poor step coverage, resulting in a number of voids and open spaces in the dielectric layer to thereby reduce the dielectric constant between the patterned conductors. A plasma etchback of the dielectric layer is employed to open and shape additional voids and open spaces in the dielectric layer. This is followed by the deposition of a second layer of dielectric material to seal the structure, including any open spaces in the first layer of dielectric material.
摘要:
A cell library is disclosed that includes soft error resistant logic cells. The soft error resistant logic cells can be used along with memory cells and conventional logic cells to form integrated circuit designs having increased soft error resistance. A method for forming an integrated circuit device is disclosed in which a first integrated circuit design is formed using conventional logic cells. An iterative process is then performed in which some of the conventional logic cells are replaced with high soft error resistant logic cells to obtain a soft error resistant design. Each soft error resistant logic cell that replaces a corresponding conventional logic cell will have the same cell size as the cell that is replaced, producing a soft error resistant design that does not take up additional surface area on the semiconductor substrate.
摘要:
A die seal structure for sealing integrated circuit devices formed on a semiconductor substrate. The die seal structure includes a die seal and a junction diode. The die seal only connects to the semiconductor substrate through the junction diode, thereby reducing noise coupling through the die seal. In another aspect of the present invention the die seal structure includes a die seal and a bipolar structure. In this embodiment the die seal only connects to the semiconductor substrate through the bipolar structure.