摘要:
A region determination circuit (60) determines whether or not each of the pixels in an image is within a region subject to correction, in which pixels having at most a predetermined brightness level appear with a frequency equal to or less than a predetermined value. An offset level generation circuit (10) generates an offset level (Offset) on the basis of the brightness of the pixels determined to be within the region subject to correction. An offset subtraction circuit (1) subtracts the offset level (Offset) from the image signal (Yi) to generate an offset image signal (Yofst). A gain generation circuit (20) generates a gain for the offset image signal (Yofst). A gain multiplication circuit (2) multiplies the offset image signal (Yofst) by the gain to generate a corrected image signal (Ya).
摘要:
A region determination circuit (60) determines whether or not each of the pixels in an image is within a region subject to correction, in which pixels having at most a predetermined brightness level appear with a frequency equal to or less than a predetermined value. An offset level generation circuit (10) generates an offset level (Offset) on the basis of the brightness of the pixels determined to be within the region subject to correction. An offset subtraction circuit (1) subtracts the offset level (Offset) from the image signal (Yi) to generate an offset image signal (Yofst). A gain generation circuit (20) generates a gain for the offset image signal (Yofst). A gain multiplication circuit (2) multiplies the offset image signal (Yofst) by the gain to generate a corrected image signal (Ya).
摘要:
For each pixel in an image (Din), a contrast correlation value (CT) is detected for peripheral areas centered around the pixel to be corrected (1), a contrast enhancement coefficient (Ken) is determined in accordance with the contrast correlation value (CT) (2), and in accordance with the enhancement coefficient (Ken), local contrast is enhanced for each pixel and an intermediate image (D3) is generated (3). When performing noise reduction (5) by smoothing the intermediate image (D3) in the time direction, the degree of noise reduction is controlled in accordance with a noise reduction coefficient (Knr) that is large where the enhancement coefficient (Ken) is large. With respect to a low-contrast image such as one captured under fog, haze or other poor weather conditions, the contrast in areas having reduced contrast is appropriately improved, and the noise that is enhanced in conjunction with contrast improvement is reduced, enabling a high quality image to be obtained.
摘要:
For each pixel in an image (Din), a contrast correlation value (CT) is detected for peripheral areas centered around the pixel to be corrected (1), a contrast enhancement coefficient (Ken) is determined in accordance with the contrast correlation value (CT) (2), and in accordance with the enhancement coefficient (Ken), local contrast is enhanced for each pixel and an intermediate image (D3) is generated (3). When performing noise reduction (5) by smoothing the intermediate image (D3) in the time direction, the degree of noise reduction is controlled in accordance with a noise reduction coefficient (Knr) that is large where the enhancement coefficient (Ken) is large. With respect to a low-contrast image such as one captured under fog, haze or other poor weather conditions, the contrast in areas having reduced contrast is appropriately improved, and the noise that is enhanced in conjunction with contrast improvement is reduced, enabling a high quality image to be obtained.
摘要:
An intermediate image generating means (1) generates a horizontal intermediate image (D1h) and a vertical intermediate image (D1v) by extracting components of an input image (DIN) in a particular frequency band; an intermediate image processing means (2) generates a horizontal image (D2Bh) and a vertical image (D2Bv) by performing non-linear processing (2A) and high-frequency component generation (2B); an intermediate image (D2) is obtained by combining these horizontal and vertical images by performing weighted addition for each pixel and is added (3) to the input image (DIN) to obtain an enhanced output image (DOUT). Even if the input image includes a fold-over component on the high-frequency side or does not include an adequate high-frequency component, adequate image enhancement processing can be carried out.
摘要:
The present invention provides a Sn—Zn based lead-free solder which can prevent peeling of solder from soldered portions even after the passage of long periods after soldering of portions to be soldered made of Cu. A Sn—Zn based lead-free solder according to the present invention comprises 5-10 mass percent of Zn, a total of 0.005-1.0 mass percent of at least one substance selected from the group consisting of Au, Pt, Pd, Fe, and Sb, optionally a total of at most 15 mass percent of at least one substance selected from the group consisting of Bi and In, and a remainder of Sn. This Sn—Zn based lead-free solder can be made into a solder paste using a rosin flux containing a halide such as an amine hydrochloride as an activator.
摘要:
A first intermediate image generating means (1) generates an intermediate image (D1) by extracting a component of an input image DIN in a particular frequency band; a second intermediate image generating means (2) generates an intermediate image D2 having a frequency component higher than the intermediate image (D1); a first intermediate image processing means (3M) generates an intermediate image (D3M) by amplifying the pixel values in the intermediate image (D1); a second intermediate image processing means (3H) generates an intermediate image (D3H) by amplifying the pixel values in the intermediate image (D2); and an adding means (4) adds the input image (DIN) and the intermediate image (D3M) and the intermediate image (D3H) together to obtain an output image (DOUT). A first amplification factor (D3MA) and a second amplification factor (D3HA) are determined according to pixel values in the input image (DIN). Even if the input image includes a fold-over component on the high-frequency side or does not include an adequate high-frequency component, an enhanced image can be provided without causing overshoot.
摘要:
A first intermediate image generating means (1) generates an intermediate image (D1) by extracting a component of an input image DIN in a particular frequency band; a second intermediate image generating means (2) generates an intermediate image D2 having a frequency component higher than the intermediate image (D1); a first intermediate image processing means (3M) generates an intermediate image (D3M) by amplifying the pixel values in the intermediate image (D1); a second intermediate image processing means (3H) generates an intermediate image (D3H) by amplifying the pixel values in the intermediate image (D2); and an adding means (4) adds the input image (DIN) and the intermediate image (D3M) and the intermediate image (D3H) together to obtain an output image (DOUT). A first amplification factor (D3MA) and a second amplification factor (D3HA) are determined according to pixel values in the input image (DIN). Even if the input image includes a fold-over component on the high-frequency side or does not include an adequate high-frequency component, an enhanced image can be provided without causing overshoot.
摘要:
The present invention provides a Sn—Zn based lead-free solder which can prevent peeling of solder from soldered portions even after the passage of long periods after soldering of portions to be soldered made of Cu. A Sn—Zn based lead-free solder according to the present invention comprises 5-10 mass percent of Zn, a total of 0.005-1.0 mass percent of at least one substance selected from the group consisting of Au, Pt, Pd, Fe, and Sb, optionally a total of at most 15 mass percent of at least one substance selected from the group consisting of Bi and In, and a remainder of Sn. This Sn—Zn based lead-free solder can be made into a solder paste using a rosin flux containing a halide such as an amine hydrochloride as an activator.
摘要:
As electronic equipment has become smaller in size, printed circuit boards which cannot be subjected to cleaning have been developed, and a no-clean lead-free solder paste is becoming necessary. In order for a solder paste not to require cleaning, it is necessary that the color of the residue be transparent and that the residue be non-tacky. A maleated rosin, which is a rosin suited for no-clean paste, has a high acid value so it is not suitable for a flux for lead-free solder. As a means of suppressing a reaction between a flux containing a maleated rosin and a Sn—Ag—Cu based solder alloy powder, a Sn—Ag—Cu—Sb based solder alloy powder is used which adds 1-8 mass % of Sb to a Sn—Ag—Cu based solder alloy. As a result, it is possible to provide a solder paste which has the excellent effect that the solder paste does not easily undergo changes over time and has a long pot life.