摘要:
A core-shell structure comprises a core (2) comprising nanoparticles and a shell (4) coating the core (2), and its void space (3) formed by the core (2) and the shell (4) is controlled. A method of preparing the core-shell structure comprises: forming particles comprising a photoetchable semiconductor, metal or polymer and coating the particles with a shell (4) comprising a non-photoetchable semiconductor, metal or polymer, to form a core-shell structure (5); and irradiating the core-shell structure with a light having a controlled wavelength in the photoetching solution to form an adjustable void space inside a shell (3) within the core-shell structure by the size-selective photoetching method. The core-shell structure allows the preparation of a catalyst exhibiting an extremely high efficiency, and can be used as a precursor for preparing a nanomaterial required for a nanodevice.
摘要:
A core-shell structure comprises a core (2) comprising nanoparticles and a shell (4) coating the core (2), and its void space (3) formed by the core (2) and the shell (4) is controlled. A method of preparing the core-shell structure comprises: forming particles comprising a photoetchable semiconductor, metal or polymer and coating the particles with a shell (4) comprising a non-photoetchable semiconductor, metal or polymer, to form a core-shell structure (5); and irradiating the core-shell structure with a light having a controlled wavelength in the photoetching solution to form an adjustable void space inside a shell (3) within the core-shell structure by the size-selective photoetching method. The core-shell structure allows the preparation of a catalyst exhibiting an extremely high efficiency, and can be used as a precursor for preparing a nanomaterial required for a nanodevice.
摘要:
The invention relates to nanostructure and its manufacturing method. In the manufacturing method of a nanostructure, first anisotropic crystalline particles, connectors having end to be connected to a specific crystal face of each of said crystalline particles, and second particles to be connected to the other end of each of said connectors are prepared. First ends of the connectors are connected to specific crystal faces of the first crystalline particles, and simultaneously or before or after the connection, the second ends of the connectors are connected to the second particles. A nanostructure formed by this method has a three-dimensional structure which does not have a closest packing structure.
摘要:
The present invention provides semiconductor nanoparticles which emit light at room temperature and include a sulfide or oxide containing zinc, a Group 11 element in the periodic table, and a Group 13 element in the periodic table as a main component or a sulfide or oxide containing a Group 11 element in the periodic table and a Group 13 element in the periodic table as a main component. For example, the semiconductor nanoparticles are represented by Zn(1-2x)InxAgxS (O
摘要翻译:本发明提供半导体纳米颗粒,其在室温下发光,并且包括含锌的硫化物或氧化物,周期表中的第11族元素和周期表中的第13族元素作为主要成分或含有 周期表中的第11族元素和周期表中的第13族元素作为主要成分。 例如,半导体纳米颗粒由Zn(1-2x)In x Ag x S(O
摘要:
The invention relates to nanostructure and its manufacturing method. In the manufacturing method of a nanostructure, first anisotropic crystalline particles, connectors having an end to be connected to a specific crystal face of each of said crystalline particles, and second particles to be connected to the other end of each of said connectors are prepared. First ends of the connectors are connected to specific crystal faces of the first crystalline particles, and simultaneously or before or after the connection, the second ends of the connectors are connected to the second particles. A nanostructure formed by this method has a three-dimensional structure which does not have a closest packing structure.
摘要:
An object of the present invention is to provide a method for producing metal oxide particles, in which metal oxide particles with high photocatalytic activity is produced, and a production apparatus therefor. The above object can be achieved by using a method for producing metal oxide particles, which includes subjecting a reaction gas containing metal chloride and an oxidizing gas containing no metal chloride in a reaction tube (11) to preheating, and then subjecting a combined gas composed of the reaction gas and the oxidizing gas to main heating in a main heating region (A) apart from the downstream side of the junction (5b), wherein the time until the combined gas from the junction (5b) arrives at the upstream end (A1) of the main heating region (A) is adjusted to be less than 25 milliseconds.
摘要:
There is provided a method and an apparatus for producing metal oxide particles, which produce metal oxide particles having a high photocatalytic activity with high yield. The method for producing metal oxide particles of the invention is characterized by including combining, in a reaction tube, a preheated metal chloride-containing gas with a preheated first gas which does not contain the metal chloride at a first junction to obtain a first combined gas, and combining the first combined gas with a preheated second gas which does not contain the metal chloride, at a second junction which is further downstream of the first junction, to obtain a second combined gas, wherein at least one of the metal chloride-containing gas and the first gas contains oxygen, and wherein the preheated metal chloride-containing gas is further heated in a region between the first junction and the second junction (referred to as first reaction zone), by combining the first gas with the metal chloride-containing gas at the first junction while setting the preheat temperature of the first gas at a temperature equal to or higher than the preheat temperature of the metal chloride-containing gas, and the first combined gas is further heated in a region downstream of the second junction by combining the second gas with the first combined gas at the second junction while setting the preheat temperature of the second gas at a temperature equal to or higher than the temperature of the first combined gas.
摘要:
Titanium oxide particles having a particle having a decahedral box-shape and a particle size in a range of from 1 nm to 100 nm can be selectively and efficiently produced by carrying out a method in which in a case of oxidizing titanium tetrachloride in vapor at high temperatures, it is rapidly heated and cooled, and a method, in which water vapor is used as an oxidizing gas, in combination under certain conditions.
摘要:
To provide a tungsten oxide photocatalyst which shows a high photocatalytic activity by irradiating with visible light even under the environment where ultraviolet light is not irradiated, the tungsten oxide photocatalyst has tungsten oxide particles and Pt particles having a primary particle size of 3 to 20 nm supported on the surface of the tungsten oxide particles in an amount of 0.03 to 5 parts by weight based on 100 parts by weight of the tungsten oxide particles.
摘要:
According to the present invention, two hydroxyl groups can be introduced into the 1-position and the 4-position of the benzene ring of an aromatic compound highly efficiently and highly selectively by a one step process to give the corresponding aromatic hydroxide.The present invention provides a production method of an aromatic hydroxide represented by the formula (2) wherein R1, R2, R3, and, R4 are each independently a hydrogen atom or an alkyl group having a carbon atom number of 1-20, and R1, R2 and/or R3 and R4 are optionally bonded to each other to form a ring, which comprises irradiating light to a photoelectrode comprised of metal oxide while applying a given potential in the presence of an aromatic compound represented by the formula (1) wherein R1, R2, R3, and R4 are as defined above.