摘要:
A fluid sensor for detecting refrigerant leakage from a refrigerant circuit includes a sensor main body having two electrodes spaced apart from each other. The fluid sensor is configured such that the fluid sensor is connectable to an impedance measurement device to measure impedance between the two electrodes.
摘要:
It is possible to detect refrigerant leakage while pinpointing the location where refrigerant leakage is occurring in a refrigerant circuit of a refrigeration system. A fluid sensor (8) is a fluid sensor for detecting refrigerant leakage from a refrigerant circuit (10), wherein the fluid sensor includes a sensor main body (8a) having two electrodes (81, 82) spaced apart, and the fluid sensor (8) is configured such that the fluid sensor (8) is capable of being connected to an impedance measurement device (9) for measuring impedance between the two electrodes (81, 82).
摘要:
A leakage diagnosis apparatus for diagnosing presence/absence of refrigerant leakage in a refrigerant circuit performing a refrigeration cycle, wherein refrigerant leakage diagnosis using the amount of refrigerant exergy loss in a circuit component of the refrigerant circuit is realized. In a leakage diagnosis apparatus, an exergy calculation section calculates a leakage index value which changes in accordance with the amount of refrigerant leaking out of a refrigerant circuit based on the amount of refrigerant exergy loss in the circuit component. Then, a leakage determination section determines whether there is refrigerant leakage in the refrigerant circuit based on the leakage index value calculated by the exergy calculation section.
摘要:
A leakage diagnosis apparatus for diagnosing presence/absence of refrigerant leakage in a refrigerant circuit performing a refrigeration cycle, wherein refrigerant leakage diagnosis using the amount of refrigerant exergy loss in a circuit component of the refrigerant circuit is realized. In a leakage diagnosis apparatus, an exergy calculation section calculates a leakage index value which changes in accordance with the amount of refrigerant leaking out of a refrigerant circuit based on the amount of refrigerant exergy loss in the circuit component. Then, a leakage determination section determines whether there is refrigerant leakage in the refrigerant circuit based on the leakage index value calculated by the exergy calculation section.
摘要:
In a refrigeration system (10) that includes a refrigerant circuit (20) configured by connecting a plurality of circuit component parts including a compressor (30), a pressure reduction device (36, 39) and a plurality of heat exchangers (34, 37) and operates in a refrigeration cycle by circulating refrigerant through the refrigerant circuit (20), a refrigerant state detection section (51) is provided for detecting the refrigerant temperatures and entropies at the entrance and exit of each of the compressor (30), the pressure reduction device (36, 39) and the heat exchangers (34, 37), and a variation calculation section (52) is provided that uses the refrigerant temperatures and entropies detected by the refrigerant state detection section (51) to separately calculate the magnitude of energy variation of refrigerant produced in each of the circuit component parts.
摘要:
In a refrigeration system (10) that includes a refrigerant circuit (20) configured by connecting a plurality of circuit component parts including a compressor (30), a pressure reduction device (36, 39) and a plurality of heat exchangers (34, 37) and operates in a refrigeration cycle by circulating refrigerant through the refrigerant circuit (20), a refrigerant state detection means (51) is provided for detecting the refrigerant temperatures and entropies at the entrance and exit of each of the compressor (30), the pressure reduction device (36, 39) and the heat exchangers (34, 37), and a variation calculation means (52) is provided that uses the refrigerant temperatures and entropies detected by the refrigerant state detection means (51) to separately calculate the magnitude of energy variation of refrigerant produced in each of the circuit component parts.
摘要:
The invention firstly comprises a method of ablation processing including a step of ablating a region of a substrate (1) by way of a laser beam (3) characterized by a further step of removing debris ablated from the region (1) by way of a flow of a fluid (7), namely a gas or vapour, a liquid or a combination of these, wherein the flow of fluid (7) is directed to flow over the region so as to entrap debris and thereafter to remove the entrapped debris from the region by directing the flow of fluid with any entrapped debris away from region along a predetermined path (6) avoiding subsequent deposition of entrapped debris on the substrate. The invention further comprises apparatus enabling a laser to ablate a region of a substrate characterized by a partially closed debris extraction module (‘DEM’) (4) located between a focusing or imaging lens (2) for a laser beam (3) and a region of a substrate (1), the DEM (4) having input (8) and output (6) ports by way of which a flow of a fluid (namely a gas or vapour, a liquid or a combination of these) is caused to flow over the region (1) so as to entrap debris ablated from the region and thereafter to remove the entrapped debris from the region by providing for the flow of fluid with entrapped debris to pass away from region along a predetermined path to prevent subsequent deposition of entrapped debris on the substrate.
摘要:
A positive displacement expander includes a volume change mechanism (90) for changing the volume of a first fluid chamber (72) of an expansion mechanism (60). The expansion mechanism (60) includes a first rotary mechanism (70) and a second rotary mechanism (80) each having a cylinder (71, 81) containing a rotor (75, 85). The first fluid chamber (72) of the first rotary mechanism (70) and a second fluid chamber (82) of the second rotary mechanism (80) are in fluid communication with each other to form an actuation chamber (66). Meanwhile, the first fluid chamber (72) of the first rotary mechanism (70) is smaller than the second fluid chamber (82) of the second rotary mechanism (80). The volume change mechanism (90) includes an auxiliary chamber (93) fluidly communicating with the first fluid chamber (72) and an auxiliary piston (92) for changing the volume of the auxiliary chamber (93). The auxiliary chamber (93) is in fluid communication with the first fluid chamber (72) of the first rotary mechanism (70).
摘要:
An electrode includes a composite mixture layer formed by applying a composite mixture having one of a cathode active material or an anode active material on one of main surfaces of a plurality of current collectors formed in substantially rectangular shapes; and a non-applied part to which the composite mixture is not applied at both end parts in the longitudinal direction. One current collector is connected to the other adjacent current collector at one end side in the longitudinal direction through a connecting part to which the composite mixture is not applied and which is provided continuously to the non-applied parts. In the electrode constructed as described above, a plurality of current collectors can be laminated to obtain a multi-layer structure and an electric current can be collected from a lead welded to only one end part of the current collector. Thus, the electrode of a new form having an excellent productivity and a high capacity can be provided.
摘要:
In an air conditioner (10), a refrigerant adjustment tank (14) is disposed in a refrigerant circuit (11). The refrigerant adjustment tank (14) is disposed just after an expander (16). In the refrigerant circuit (11), a liquid injection line (31) and a gas injection line (33) are arranged. When a liquid side control valve (32) is placed in the open state, liquid refrigerant in the refrigerant adjustment tank (14) is supplied through the liquid injection line (31) to the suction side of a compressor (15). On the other hand, when a gas side control valve (34) is placed in the open state, gas refrigerant in the refrigerant adjustment tank (14) is supplied through the gas injection line (33) to the suction side of the compressor (15). The opening of the liquid and gas side control valves (32, 34) is controlled to thereby make a change in the state of refrigerant drawn into the compressor (15), whereby the amount of refrigerant passing through the compressor (15) and the amount of refrigerant passing through the expander (16) are balanced with each other.