摘要:
A multilayer, direct-overwrite, magnetooptic recording element comprises first and second layers of magnetic materials having different magnetic coercivities and Curie temperatures. According to the invention, one of the two magnetic layers is doped with zirconium. The addition of zirconium has the effect of substantially lowering the Curie temperature of the doped layer, thereby enlarging the Curie temperature differential between the magnetic layers. The zirconium additive also has the effect of stabilizing the magnetic properties of the doped layer.
摘要:
An optical recording medium including a substrate, a metal underlayer deposited over the substrate wherein the underlayer has a substantially low thermal conductivity, a recording layer over the metal underlayer, and a transparent protective layer over the recording layer.
摘要:
A multilayer, direct-overwrite, magneto-optic recording elment comprises first and second layers of magnetic materials having different magnetic coercivities and Curie temperatures. Such layers are spaced apart by an intermediate layer comprising a readily polarizable non-magnetic metal. The intermediate layer serves to control the degree of magnetic exchange interaction between the magnetic layers, and prevents the constituents of the magnetic layers from diffusing between such layers.
摘要:
A magnetic optical recording element including a rare earth-transition metal recording layer, a barrier layer and a self-passivating active metal layer.
摘要:
An OLED device comprises a cathode, an anode, and has therebetween: (a) a light emitting layer containing a non-light-emitting fluoranthene compound with a 7,10-diaryl substituted fluoranthene nucleus having no aromatic rings annulated to the fluoranthene nucleus; and (b) comprising still further an additional layer, containing an organic alkali metal compound, located between the cathode and the electron transporting layer. OLED devices of the invention provide reduced drive voltage and improved color, and provide embodiments with other improved features such as operational stability and high luminance.
摘要:
An OLED device having two spaced electrodes including: first, second, and third light-emitting units disposed between the electrodes, the first light-emitting unit produces light that has multiple peaks at wavelengths longer than 500 nm and substantially no emission at wavelengths shorter than 480 nm, and the second and third light-emitting units produce light that has substantial emission at wavelengths shorter than 500 nm; intermediate connectors respectively disposed between the first and second light-emitting units, and between the second and third light-emitting units; and wherein the OLED device emits light with a color temperature greater than 7,000K.
摘要:
A tandem OLED device including an anode; a cathode; at least two electroluminescent units disposed between the anode and the cathode, wherein each of the electroluminescent units includes at least one hole-transporting layer and one organic light-emitting layer; and an intermediate connector disposed between adjacent electroluminescent units, wherein the intermediate connector includes an n-doped organic layer and an electron-accepting layer, the electron-accepting layer being disposed closer to the cathode than the n-doped organic layer, and wherein the n-doped organic layer includes an alkali metal and an organic alkali metal complex.
摘要:
A tandem OLED device having two spaced electrodes comprising: first and second light-emitting units that produce different emission spectra disposed between the electrodes, the first light-emitting unit produces light that has multiple peaks at wavelengths longer than 500 nm and substantially no emission at wavelengths shorter than 480 nm, and the second light-emitting unit produces light that has substantial emission at wavelengths shorter than 500 nm; and an intermediate connector disposed between the light-emitting units.
摘要:
An inverted OLED device, comprising: a substrate; a cathode disposed on the substrate; an anode spaced from the cathode; at least one light-emitting layer disposed between the anode and the cathode; a hole-transporting layer disposed between the anode and the light-emitting layer(s); an electron-transporting layer disposed between the cathode and the light-emitting layer(s); a first electron-accepting layer disposed between the hole-transporting layer and the anode and including a first electron-deficient organic material constituting more than 50% by volume of the first electron-accepting layer and having a reduction potential greater than −0.5 V vs. a Saturated Calomel Electrode; and a second electron-accepting layer disposed between the electron-transporting layer and the cathode including a second electron-deficient organic material constituting more than 50% by volume of the second electron-accepting layer and having a reduction potential greater than −0.5 V vs. a Saturated Calomel Electrode.
摘要:
An improved OLED structure that enhances both stability and luminance efficiency, includes a substrate; an anode and a cathode; a light-emitting layer disposed between the anode and cathode; and a hole-transporting structure disposed between the light-emitting layer and the anode including two or more sublayers; a first sublayer in contact with the light-emitting layer and including a first hole-transporting material and a first stabilizing dopant, and a second sublayer including a second hole-transporting material and a second stabilizing dopant, and a third dopant having a bandgap that is smaller than each of the bandgaps of the second hole-transporting material and the second stabilizing dopant, respectively.