Abstract:
A structure of micro-electro-mechanical systems (MEMS) electroacoustic transducer is disclosed. The MEMS electroacoustic transducer includes a substrate having a MEMS device region, a diaphragm having openings and disposed in the MEMS device region, a silicon material layer disposed on the diaphragm and sealing the diaphragm, and a conductive pattern disposed beneath the diaphragm in the MEMS device region. Preferably, a first cavity is also formed between the diaphragm and the substrate.
Abstract:
A method of fabricating an integrated structure for MEMS device and semiconductor device comprises steps of: providing a substrate having a transistor thereon in a semiconductor device region and a first MEMS component thereon in a MEMS region; performing a interconnect process on the substrate in the semiconductor device region to form a plurality of first dielectric layers, at least a conductive plug and at least a conductive layer in the first dielectric layers; forming a plurality of second dielectric layers and an etch stopping device in the second dielectric layers on the substrate in a etch stopping device region; forming a plurality of third dielectric layers and at least a second MEMS component in the third dielectric layers on the substrate in the MEMS region; and performing an etching process to remove the third dielectric layers in the MEMS region.
Abstract:
A structure of micro-electro-mechanical systems (MEMS) electroacoustic transducer is disclosed. The MEMS electroacoustic transducer includes a substrate having a MEMS device region, a diaphragm having openings and disposed in the MEMS device region, a silicon material layer disposed on the diaphragm and sealing the diaphragm, and a conductive pattern disposed beneath the diaphragm in the MEMS device region. Preferably, a first cavity is also formed between the diaphragm and the substrate.
Abstract:
A method of forming a MEMS structure, in which an etch stop layer is formed to be buried within the inter-dielectric layer and, during an etch of the substrate and the inter-dielectric layer from backside to form a chamber, the etch stop layer protect the remaining inter-dielectric layer. The chamber thus formed has an opening at a backside of the substrate, a ceiling opposite to the opening, and a sidewall joining the ceiling. The sidewall may further include a portion of the etch stop layer.
Abstract:
A method for fabricating an integrated device includes the following steps. First, a multi-layered structure is formed on a substrate, wherein the multi-layered structure is embedded in a lower isolation layer. Then, a bottom conductive pattern and a top conductive pattern are formed on a top surface of the lower isolation layer, wherein the top conductive pattern is on a top surface of the bottom conductive pattern. Afterwards, portions of the top conductive pattern are removed to expose portions of the bottom conductive pattern. Subsequently, an upper isolation layer is deposited on the lower isolation layer so that the upper isolation layer can be in direct contact with the portions of the bottom conductive pattern. Finally, portions of the lower isolation layer and the upper isolation layer are removed so as to expose portions of the substrate.
Abstract:
A method of forming a MEMS structure, in which an etch stop layer is formed to be buried within the inter-dielectric layer and, during an etch of the substrate and the inter-dielectric layer from backside to form a chamber, the etch stop layer protect the remaining inter-dielectric layer. The chamber thus formed has an opening at a backside of the substrate, a ceiling opposite to the opening, and a sidewall joining the ceiling. The sidewall may further include a portion of the etch stop layer.
Abstract:
A method of fabricating an integrated structure for MEMS device and semiconductor device comprises steps of: providing a substrate having a transistor thereon in a semiconductor device region and a first MEMS component thereon in a MEMS region; performing a interconnect process on the substrate in the semiconductor device region to form a plurality of first dielectric layers, at least a conductive plug and at least a conductive layer in the first dielectric layers; forming a plurality of second dielectric layers and an etch stopping device in the second dielectric layers on the substrate in a etch stopping device region; forming a plurality of third dielectric layers and at least a second MEMS component in the third dielectric layers on the substrate in the MEMS region; and performing an etching process to remove the third dielectric layers in the MEMS region.
Abstract:
A MEMS structure includes a substrate, an inter-dielectric layer on a front side of the substrate, a MEMS component on the inter-dielectric layer, and a chamber disposed within the inter-dielectric layer and through the substrate. The chamber has an opening at a backside of the substrate. An etch stop layer is disposed within the inter-dielectric layer. The chamber has a ceiling opposite to the opening and a sidewall joining the ceiling. The sidewall includes a portion of the etch stop layer.
Abstract:
A MEMS structure includes a substrate, an inter-dielectric layer on a front side of the substrate, a MEMS component on the inter-dielectric layer, and a chamber disposed within the inter-dielectric layer and through the substrate. The chamber has an opening at a backside of the substrate. An etch stop layer is disposed within the inter-dielectric layer. The chamber has a ceiling opposite to the opening and a sidewall joining the ceiling. The sidewall includes a portion of the etch stop layer.
Abstract:
A method for fabricating an integrated device includes the following steps. First, a multi-layered structure is formed on a substrate, wherein the multi-layered structure is embedded in a lower isolation layer. Then, a bottom conductive pattern and a top conductive pattern are formed on a top surface of the lower isolation layer, wherein the top conductive pattern is on a top surface of the bottom conductive pattern. Afterwards, portions of the top conductive pattern are removed to expose portions of the bottom conductive pattern. Subsequently, an upper isolation layer is deposited on the lower isolation layer so that the upper isolation layer can be in direct contact with the portions of the bottom conductive pattern. Finally, portions of the lower isolation layer and the upper isolation layer are removed so as to expose portions of the substrate.