Abstract:
A method and system are provided for inspecting a plurality of target features arrayed in spaced arrangement on a surface of a target object, such as but not limited to inspection of the location of cooling air holes in the surface of a turbine blade or vane.
Abstract:
A resonant frequency testing system for airfoils comprises a broach block, a clamp, an acoustic speaker, a laser vibrometer, and a control processor assembly. The broach block has a slot disposed to receive the airfoil in an airfoil location. The clamp has a torque-actuated shutoff, and is disposed to lock the airfoil in the broach block slot under a fixed clamping force. The acoustic sensor is disposed adjacent the airfoil location to emit sonic pulses, and the laser vibrometer is oriented towards the airfoil location to sense vibration signatures of the airfoil when excited by the sonic pulses. The control processor assembly is configured to control the acoustic speaker and laser vibrometer, to decompose the sensed vibration signatures into resonant frequencies of the airfoil, and to store the resonant frequencies in a digital storage database, correlated with a unique ID corresponding to the airfoil
Abstract:
A method is provided for inspecting at least one aperture of a component with curable material and an inspection system. At least a portion of the curable material is injected into the aperture. The curable material conforms to at least a portion the aperture and subsequently cures and forms a mold of at least a portion of the aperture. The mold is removed from the aperture. At least a portion of a geometry of the mold is compared to at least a portion of a geometry of a reference model for the aperture using the inspection system.
Abstract:
A method and system are provided for inspecting a plurality of target features arrayed in spaced arrangement on a surface of a target object, such as but not limited to inspection of the location of cooling air holes in the surface of a turbine blade or vane.
Abstract:
A resonant frequency testing system for airfoils comprises a broach block, a clamp, an acoustic speaker, a laser vibrometer, and a control processor assembly. The broach block has a slot disposed to receive the airfoil in an airfoil location. The clamp has a torque-actuated shutoff, and is disposed to lock the airfoil in the broach block slot under a fixed clamping force. The acoustic sensor is disposed adjacent the airfoil location to emit sonic pulses, and the laser vibrometer is oriented towards the airfoil location to sense vibration signatures of the airfoil when excited by the sonic pulses. The control processor assembly is configured to control the acoustic speaker and laser vibrometer, to decompose the sensed vibration signatures into resonant frequencies of the airfoil, and to store the resonant frequencies in a digital storage database, correlated with a unique ID corresponding to the airfoil.
Abstract:
A method of machining cooling holes in a component includes the steps of inserting an electro discharge machining guide that houses an electrode into an internal cavity of a component, and machining a cooling hole into a wall of the component with the electrode. A gas turbine engine component includes first and second spaced apart walls providing an internal cavity. The first wall has outer and inner surfaces. The inner surface faces the internal cavity. A cooling hole extends through the first wall from the inner surface to the outer surface. The cooling hole includes entry and exit openings respectively provided in the inner and outer surfaces. The exit opening includes a cross-sectional area that is smaller than a cross-sectional area of the entry opening.
Abstract:
An electro discharge machining system includes a guide having first and second portions that are non-colinear with respect to one another. A consumable electrode is housed within the guide and configured to drill cooling holes in a component. A controller is programmed to position the guide and electrode to a desired position with respect to the component. An electro discharge machining guide includes first and second portions that are non-colinear with respect to one another and that include a passage configured to receive an electrode.
Abstract:
A method is provided for inspecting at least one aperture of a component with curable material and an inspection system. At least a portion of the curable material is injected into the aperture. The curable material conforms to at least a portion the aperture and subsequently cures and forms a mold of at least a portion of the aperture. The mold is removed from the aperture. At least a portion of a geometry of the mold is compared to at least a portion of a geometry of a reference model for the aperture using the inspection system.
Abstract:
A method and system are provided for inspecting a plurality of target features arrayed in spaced arrangement on a surface of a target object, such as but not limited to inspection of the location of cooling air holes in the surface of a turbine blade or vane.
Abstract:
A method of machining cooling holes in a component includes the steps of inserting an electro discharge machining guide that houses an electrode into an internal cavity of a component, and machining a cooling hole into a wall of the component with the electrode. A gas turbine engine component includes first and second spaced apart walls providing an internal cavity. The first wall has outer and inner surfaces. The inner surface faces the internal cavity. A cooling hole extends through the first wall from the inner surface to the outer surface. The cooling hole includes entry and exit openings respectively provided in the inner and outer surfaces. The exit opening includes a cross-sectional area that is smaller than a cross-sectional area of the entry opening.