Abstract:
A cooling circuit for a gas turbine engine includes a gas turbine engine component having at least one internal cooling cavity defined by an internal wall surface and a plurality of turbulent flow features extending outwardly from the internal wall surface. Each turbulent flow feature is spaced apart from an adjacent turbulent flow feature in a first direction. At least one trench extends through the turbulent flow features in the first direction, and a plurality of cooling holes are formed within the at least one trench. A gas turbine engine and a method of forming a cooling circuit for a gas turbine engine component are also disclosed.
Abstract:
A cooling circuit for a gas turbine engine includes a gas turbine engine component having at least one internal cooling cavity defined by an internal wall surface and a plurality of turbulent flow features extending outwardly from the internal wall surface. Each turbulent flow feature is spaced apart from an adjacent turbulent flow feature in a first direction. At least one trench extends through the turbulent flow features in the first direction, and a plurality of cooling holes are formed within the at least one trench. A gas turbine engine and a method of forming a cooling circuit for a gas turbine engine component are also disclosed.
Abstract:
An airfoil has an of internal cooling channel, and cooling holes extending from the internal cooling channel to an outer skin. Air is injected into the cooling channel, and then into an inlet of the cooling hole. The exit of the air from an outlet of the cooling hole at the outer skin is monitored to determine whether the outlet is blocked. A location of the inlet of the cooling hole is determined by utilizing the determined location of the outlet, in combination with a known angle through which the cooling hole extends.
Abstract:
A method is provided for inspecting at least one aperture of a component with curable material and an inspection system. At least a portion of the curable material is injected into the aperture. The curable material conforms to at least a portion the aperture and subsequently cures and forms a mold of at least a portion of the aperture. The mold is removed from the aperture. At least a portion of a geometry of the mold is compared to at least a portion of a geometry of a reference model for the aperture using the inspection system.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a body portion having an exterior surface and an internal surface. A cavity is disposed inside of the body portion. A cooling hole extends between the exterior surface and the internal surface and includes a metering section having an outlet and an inlet. The inlet is shaped dissimilar to the outlet.
Abstract:
An airfoil body includes an airfoil wall defined between an internal cavity surface and an external airfoil surface. A pad extends from the internal cavity surface. A cooling hole extends from the external airfoil surface, through the airfoil wall and through the pad for fluid communication through the airfoil wall.
Abstract:
One exemplary embodiment of this disclosure relates to a method of inspecting a component of a gas turbine engine. The method includes performing a through-hole inspection, and determining a location of the plurality of holes from results of the through-hole inspection.
Abstract:
A method of non-destructively inspecting an article includes scanning an article to produce a computerized three-dimensional representation of an internal feature of the article. A measurement characteristic of the internal feature is then generated from a plurality of cross-sections through the computerized three-dimensional representation of the internal feature. The measurement characteristic is then used to determine whether the internal feature meets a design criterion.
Abstract:
A method is provided for inspecting at least one aperture of a component with curable material and an inspection system. At least a portion of the curable material is injected into the aperture. The curable material conforms to at least a portion the aperture and subsequently cures and forms a mold of at least a portion of the aperture. The mold is removed from the aperture. At least a portion of a geometry of the mold is compared to at least a portion of a geometry of a reference model for the aperture using the inspection system.
Abstract:
A method of machining cooling holes in a component includes the steps of inserting an electro discharge machining guide that houses an electrode into an internal cavity of a component, and machining a cooling hole into a wall of the component with the electrode. A gas turbine engine component includes first and second spaced apart walls providing an internal cavity. The first wall has outer and inner surfaces. The inner surface faces the internal cavity. A cooling hole extends through the first wall from the inner surface to the outer surface. The cooling hole includes entry and exit openings respectively provided in the inner and outer surfaces. The exit opening includes a cross-sectional area that is smaller than a cross-sectional area of the entry opening.