Abstract:
A coolant distributor comprising a head having a plurality of ports, each of the ports being fluidly coupled to a flow control valve. A cap is demountably coupled to the head. The cap comprises at least one fixed nozzle fluidly coupled to at least one port. A controller is coupled to the flow control valve, wherein the controller is configured to actuate the flow control valve to pass a cooling fluid through the at least one fixed nozzle to direct the cooling fluid to at least one predetermined cutting region of a machine tool and work piece proximate the coolant distributor.
Abstract:
Systems and methods are disclosed herein for adding surface features to grinding wheels. A laser may be directed substantially perpendicular to a grinding surface of a grinding wheel. The laser may be pulsed and may ablate material from the grinding surface. The laser may move relative to the grinding wheel in order to ablate shaped surface features into the grinding surface.
Abstract:
Systems and methods are disclosed herein for adding surface features to grinding wheels. A laser may be directed substantially perpendicular to a grinding surface of a grinding wheel. The laser may be pulsed and may ablate material from the grinding surface. The laser may move relative to the grinding wheel in order to ablate shaped surface features into the grinding surface
Abstract:
A method is provided for inspecting at least one aperture of a component with curable material and an inspection system. At least a portion of the curable material is injected into the aperture. The curable material conforms to at least a portion the aperture and subsequently cures and forms a mold of at least a portion of the aperture. The mold is removed from the aperture. At least a portion of a geometry of the mold is compared to at least a portion of a geometry of a reference model for the aperture using the inspection system.
Abstract:
Aspects of the disclosure are directed to processing a component. A first coating is removed from a substrate of the component, the substrate including a first hole. Subsequent to removing the first coating from the substrate, a second coating is applied to the substrate, where a portion of the second coating at least partially blocks the first hole. Subsequent to applying the second coating to the substrate, the portion of the second coating is removed to generate a second hole through the second coating. The removal of the portion of the second coating creates a bore in the second coating that provides a clearance from an edge of the first hole on a surface of the substrate that interfaces to the second coating.
Abstract:
A method is provided for manufacturing a component using a body comprising metal. This method includes: cooling the body to provide at least a cooled region of the body; and machining the cooled region using a tool that contacts the cooled region.
Abstract:
A method is provided for inspecting at least one aperture of a component with curable material and an inspection system. At least a portion of the curable material is injected into the aperture. The curable material conforms to at least a portion the aperture and subsequently cures and forms a mold of at least a portion of the aperture. The mold is removed from the aperture. At least a portion of a geometry of the mold is compared to at least a portion of a geometry of a reference model for the aperture using the inspection system.
Abstract:
Aspects of the disclosure are directed to processing a component. A first coating is removed from a substrate of the component, the substrate including a first hole. Subsequent to removing the first coating from the substrate, a second coating is applied to the substrate, where a portion of the second coating at least partially blocks the first hole. Subsequent to applying the second coating to the substrate, the portion of the second coating is removed to generate a second hole through the second coating. The removal of the portion of the second coating creates a bore in the second coating that provides a clearance from an edge of the first hole on a surface of the substrate that interfaces to the second coating.
Abstract:
Systems and methods are disclosed herein for dressing and trueing grinding wheels. A laser may be directed substantially tangential to a grinding surface of a grinding wheel. The laser may be a continuous wave laser and may ablate material from the grinding surface. The laser may move relative to the grinding wheel in order to ablate shaped surface profiles into the grinding surface.
Abstract:
Systems and methods are disclosed herein for dressing and trueing grinding wheels. A laser may be directed substantially tangential to a grinding surface of a grinding wheel. The laser may be a continuous wave laser and may ablate material from the grinding surface. The laser may move relative to the grinding wheel in order to ablate shaped surface profiles into the grinding surface.