Abstract:
A process is presented for the dehydrogenation of paraffins. The process utilizes the combustion of a fuel within the dehydrogenation reactor to provide the heat of reaction for dehydrogenation. The process controls the combustion through limiting the oxidant concentration. A paraffin feedstream is mixed with a fuel, and the fuel/paraffin feedstream is mixed with an oxidant stream at the inlet of each dehydrogenation reactor.
Abstract:
One exemplary embodiment can be a process for regenerating catalyst in a fluid catalytic cracking unit. Generally, the process includes providing a feed to a riser of a reaction vessel, and providing a stream to a distributor positioned within a void proximate to an inlet receiving unregenerated catalyst in a regenerator. The feed can include at least one of a gas oil, a vacuum gas oil, an atmospheric gas oil, a coker gas oil, a hydrotreated gas oil, a hydrocracker unconverted oil, and an atmospheric residue
Abstract:
Processes for increasing an affinity of a filter media to airborne viral particles. A fiber substrate comprising borosilicate is provided. The fiber substrate may comprise acidic functional groups. A metal salt solution is introduced to the fiber substrate to form a treated substrate. The metal salt solution includes divalent and/or trivalent metal cations. The pH of the metal salt solution is adjusted, and a divalent and/or trivalent metal cation is exchanged with a proton from the acidic functional groups. The metal may be present in an amount ranging from about 0.001 to about 3.0 wt. % of the treated fiber substrate. The treated fiber substrate is incorporated into a filter media before or after the deposition of the metal onto the fiber substrate.
Abstract:
One exemplary embodiment can be a process for regenerating catalyst in a fluid catalytic cracking unit. Generally, the process includes providing a feed to a riser of a reaction vessel, and providing a stream to a distributor positioned within a void proximate to an inlet receiving unregenerated catalyst in a regenerator. The feed can include at least one of a gas oil, a vacuum gas oil, an atmospheric gas oil, a coker gas oil, a hydrotreated gas oil, a hydrocracker unconverted oil, and an atmospheric residue.
Abstract:
One exemplary embodiment can be a process for regenerating catalyst in a fluid catalytic cracking unit. Generally, the process includes providing a feed to a riser of a reaction vessel, and providing a stream to a distributor positioned within a void proximate to an inlet receiving unregenerated catalyst in a regenerator. The feed can include at least one of a gas oil, a vacuum gas oil, an atmospheric gas oil, a coker gas oil, a hydrotreated gas oil, a hydrocracker unconverted oil, and an atmospheric residue
Abstract:
A process is presented for the removal or aromatics from a hydrocarbon stream. The hydrocarbon stream is generated by a dehydrogenation process that generates aromatics. The process includes a two contact cooler system with the first and second contact coolers using different coolants. The second coolant is a non-aromatic hydrocarbon coolant that will absorb aromatics.
Abstract:
A process is presented for the removal or aromatics from a hydrocarbon stream. The hydrocarbon stream is generated by a dehydrogenation process that generates aromatics. The process includes a two contact cooler system with the first and second contact coolers using different coolants. The second coolant is a non-aromatic hydrocarbon coolant that will absorb aromatics.
Abstract:
A process is presented for quenching a process stream in a paraffin dehydrogenation process. The process comprises cooling a propane dehydrogenation stream during the hot residence time after the process stream leaves the catalytic bed reactor section. The process includes cooling and compressing the product stream, taking a portion of the product stream and passing the portion of the product stream to the mix with the process stream as it leaves the catalytic bed reactor section.
Abstract:
One exemplary embodiment can be a process for regenerating catalyst in a fluid catalytic cracking unit. Generally, the process includes providing a feed to a riser of a reaction vessel, and providing a stream to a distributor positioned within a void proximate to an inlet receiving unregenerated catalyst in a regenerator. The feed can include at least one of a gas oil, a vacuum gas oil, an atmospheric gas oil, a coker gas oil, a hydrotreated gas oil, a hydrocracker unconverted oil, and an atmospheric residue.