Abstract:
An oxynitride phosphor powder is an α-SiAlON phosphor having a dominant wavelength of 565-577 nm and fluorescence intensity and external quantum efficiency that are high enough for practical use. The oxynitride phosphor powder comprises an α-SiAlON represented by the compositional formula: Cax1Eux2Ybx3Si12−(y+z)Al(y+z)OzN16−z (wherein 0.0
Abstract:
An oxynitride phosphor powder includes an α-sialon fluorescent body having a fluorescent peak wavelength of 605-615 nm, and the external quantum efficiency of the oxynitride phosphor powder is greater than the conventional art. The oxynitride phosphor powder includes an α-sialon represented by the formula Cax1Eux2Si12-(y+z)Al(y+z)OzN16-z (where x1, x2, y, and z satisfy the expressions 1.10≦x1+x2≦1.70, 0.18≦x2/x1≦0.47, and 2.6≦y≦3.6, 0.0≦z≦1.0).
Abstract:
An oxynitride phosphor power has a fluorescence peak wavelength of 580 to 605 nm, the oxynitride phosphor having a higher external quantum efficiency than ever before. The oxynitride phosphor powder is an oxynitride phosphor powder containing α-SiAlON and aluminum nitride, represented by composition formula: Cax1Eux2Si12−(y+z)Al(y+z)OzN16−z wherein x1, x2, y and z are 0
Abstract:
An oxynitride phosphor powder is an α-SiAlON phosphor having a dominant wavelength of 565-577 nm and fluorescence intensity and external quantum efficiency that are high enough for practical use. The oxynitride phosphor powder comprises an α-SiAlON represented by the compositional formula: Cax1Eux2Ybx3Si12-(y+z)Al(y+z)OzN16-z (wherein 0.0
Abstract:
An oxynitride phosphor powder contains α-SiAlON and aluminum nitride, obtained by mixing a silicon source, an aluminum source, a calcium source, and a europium source to produce a composition represented by a compositional formula: Cax1Eux2Si12-(y+z)Al(y+z)OzN16-z (wherein x1, x2, y and z are 0
Abstract translation:氧氮化物荧光体粉末含有通过混合硅源,铝源,钙源和铕源而得到的α-SiAlON和氮化铝,以制备由组成式Cax1Eux2Si12-(y + z)Al( y + z)OzN16-z(其中x1,x2,y和z分别为0
Abstract:
An oxynitride phosphor powder contains α-SiAlON and aluminum nitride, obtained by mixing a silicon source, an aluminum source, a calcium source, and a europium source to produce a composition represented by a compositional formula: Cax1Eux2Si12−(y+z)Al(y+z)OzN16−z (wherein x1, x2, y and z are 0
Abstract:
A method of manufacturing a wavelength conversion member including a polycrystalline ceramics includes mixing a substance serving as a silicon source, a substance serving as an aluminum source, a substance serving as a calcium source, and a substance serving as a europium source; firing the obtained mixture to obtain an oxynitride phosphor powder; then sintering the oxynitride phosphor powder in an inert atmosphere to obtain the polycrystalline ceramics, characterized in that the sintered oxynitride phosphor powder has a composition (excluding oxygen) represented by the Formula: Cax1Eux2Si12-(y+z)Al(y+z)OzN16-z (in the Formula, x1, x2, y, and z are values such that 0
Abstract:
A method of producing a silicon nitride powder includes heating an amorphous Si—N(—H)-based compound in which assuming that the specific surface area is RS (m2/g) and the oxygen content ratio is RO (mass %), RS/RO is 500 or more, at a temperature rising rate of 12 to 100° C./min in a temperature range from 1,000 to 1,400° C. while flowing the compound by a continuous firing furnace.
Abstract:
An oxynitride phosphor powder has a fluorescence peak wavelength of 587 to 630 nm and a high external quantum efficiency. A method of producing the oxynitride phosphor powder containing Li at 50 to 10,000 ppm includes mixing silicon nitride powder, a substance serving as an aluminum source, a substance serving as a calcium source and a substance serving as an europium source; firing the mixture at 1500 to 2000° C. in an inert gas atmosphere or a reducing gas atmosphere to obtain a fired oxynitride phosphor composed mainly of Ca-containing α-SiAlON, as an intermediate; and heat treating the fired oxynitride phosphor at a temperature of 1450° C. to less than the firing temperature, in an inert gas atmosphere or in a reducing gas atmosphere in the presence of Li.
Abstract:
A method of manufacturing a wavelength conversion member including a polycrystalline ceramics includes mixing a substance serving as a silicon source, a substance serving as an aluminum source, a substance serving as a calcium source, and a substance serving as a europium source; firing the obtained mixture to obtain an oxynitride phosphor powder; then sintering the oxynitride phosphor powder in an inert atmosphere to obtain the polycrystalline ceramics, characterized in that the sintered oxynitride phosphor powder has a composition (excluding oxygen) represented by the Formula: Cax1Eux2Si12-(y+z)Al(y+z)OzN16-z (in the Formula, x1, x2, y, and z are values such that 0