Abstract:
In one aspect, the disclosure relates to protective, anti-bacterial coatings for medical implants and methods of making the same. Also disclosed herein are methods for improving the anti-bacterial properties of a medical device coated with silicon carbide (SiC) or titanium nitride (TiN). Further disclosed herein are medical devices including an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
Abstract:
Disclosed herein is a method for forming an anti-microbial layer on an apparatus. Also disclosed is a method for improving the anti-bacterial properties of a titanium device coated with titanium-nitride (TiN). Also disclosed is a medical apparatus comprising an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
Abstract:
Various examples are provided for low cost disposable medical sensors fabricated on glass, paper or plastics, and applications thereof. In one example, a medical sensor includes a base structure comprising a functionalized sensing area; and a transistor disposed on the base structure adjacent to the functionalized sensing area. In another example, a medical sensor includes a base structure comprising a functionalized sensing area disposed on a first electrode pad and a reference sensing area disposed on a second electrode pad separated from the first electrode pad; and a transistor having a gate electrically coupled to the second electrode pad of the base structure. A gate pulse applied to the functionalized sensing can produce a drain current corresponding to an amount of a target present in a sample disposed on the base structure.
Abstract:
Various examples are provided for low cost disposable medical sensors fabricated on glass, paper or plastics, and applications thereof. In one example, a medical sensor includes a base structure comprising a functionalized sensing area; and a transistor disposed on the base structure adjacent to the functionalized sensing area. In another example, a medical sensor includes a base structure comprising a functionalized sensing area disposed on a first electrode pad and a reference sensing area disposed on a second electrode pad separated from the first electrode pad; and a transistor having a gate electrically coupled to the second electrode pad of the base structure. A gate pulse applied to the functionalized sensing can produce a drain current corresponding to an amount of a target present in a sample disposed on the base structure.
Abstract:
Various examples are provided for disposable medical sensors that can be used for detection of SARS-CoV-2 antigen, cardiac troponin I, or other biosensing applications. In one example, a medical sensing system includes single-use disposable test strip comprising a functionalized sensing area configured to detect SARS-CoV-2 antigen and a portable sensing and readout device including pulse generation circuitry that can generate synchronized gate and drain pulses for detection and quantification of SARS-CoV-2 antigen in biological samples. In another example, a method includes providing a saliva sample to a functionalized sensing area configured to detect SARS-CoV-2 antigen, generating synchronized gate and drain pulses for a transistor, the gate pulse provided via electrodes of the functionalized sensing area, and sensing an output of the transistor that is a function of a concentration of SARS-CoV-2 antigen in the sample.
Abstract:
Various examples are provided for disposable medical sensors that can be used for the detection of cerebral spinal fluid. In one example, a medical sensing system includes a disposable sensing unit comprising a functionalized sensing area disposed between electrodes; and a portable sensing unit analyzer including pulse generation circuitry that can generate synchronized gate and drain pulses and a transistor with a gate electrically coupled to one electrode. A gate pulse output of the pulse generation circuitry is electrically coupled to a second electrode and a drain pulse output is electrically coupled to a drain of the transistor. In another example, a method includes providing a sample to a functionalized sensing area, generating synchronized gate and drain pulses for a transistor, the gate pulse provided via the electrodes and functionalized sensing area, and sensing an output of the transistor that is a function of a target concentration of the sample.
Abstract:
Embodiments of the present invention provide binding molecule-functionalized high electron mobility transistors (HEMTs) that can be used to detect toxins, pathogens and other biological materials. In a specific embodiment, an antibody-functionalized HEMT can be used to detect botulinum toxin. The antibody can be anchored to a gold-layered gate area of the HEMT through immobilized thioglycolic acid. Embodiments of the subject detectors can be used in field-deployable electronic biological applications based on AlGaN/GaN HEMTs.
Abstract translation:本发明的实施方案提供可用于检测毒素,病原体和其他生物材料的结合分子官能化的高电子迁移率晶体管(HEMT)。 在具体实施方案中,抗体功能化的HEMT可用于检测肉毒杆菌毒素。 抗体可以通过固定化的巯基乙酸锚定在HEMT的金层门区。 本发明的检测器的实施例可以用于基于AlGaN / GaN HEMT的现场可部署电子生物学应用中。
Abstract:
Disclosed herein is a method for forming an anti-microbial layer on an apparatus. Also disclosed is a method for improving the anti-bacterial properties of a titanium device coated with titanium-nitride (TiN). Also disclosed is a medical apparatus comprising an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
Abstract:
In one aspect, the disclosure relates to protective, anti-bacterial coatings for medical implants and methods of making the same. Also disclosed herein are methods for improving the anti-bacterial properties of a medical device coated with silicon carbide (SiC) or titanium nitride (TiN). Further disclosed herein are medical devices including an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
Abstract:
Dental prosthetic restoration coatings made of dielectric materials, methods of fabricating the same, as well as methods of testing dental prosthetic restorations are provided. A prosthetic restoration coating can include dielectric materials such as Al2O3, ZrO2, SiNx, SiC, and SiO2. Application can take place using plasma enhanced chemical vapor deposition (PECVD) methods, and alternating materials can be used to achieve desired anticorrosive, structural integrity, hardness, adhesion, and color characteristics. A testing method can include immersing a test device in solutions of differing pH, with or without abrasive steps. The cycling can include an acidic solution and a basic solution, with an optional neutral solution. As the abrasive step, a chewing simulator can be utilized.