Abstract:
Methods of forming lignin prepolymers are provided. In an embodiment, such a method comprises adding an acid to an ozonized reaction mixture, the ozonized reaction mixture comprising ozonized lignin having a backbone, and aromatic monomers cleaved from a lignin, under conditions to react the cleaved aromatic monomers with the backbone of the ozonized lignin to form a lignin prepolymer. The methods may further comprise using the lignin prepolymer to form a lignin resin.
Abstract:
A process for oxidizing an alkyl substrate may comprise combining an alkyl substrate (e.g., propane, n-butane) and ozone in a liquid phase medium comprising a branched alkane activator (e.g., isobutane) and a protic additive (e.g., water) under conditions sufficient to oxidize the alkyl substrate to products. The alkyl substrate may be selected from linear and cyclic alkanes.
Abstract:
Methods of forming lignin prepolymers are provided. In an embodiment, such a method comprises adding an acid to an ozonized reaction mixture, the ozonized reaction mixture comprising ozonized lignin having a backbone, and aromatic monomers cleaved from a lignin, under conditions to react the cleaved aromatic monomers with the backbone of the ozonized lignin to form a lignin prepolymer. The methods may further comprise using the lignin prepolymer to form a lignin resin.
Abstract:
A method for increasing ozone concentration in a liquid can include: providing a gas having ozone; introducing the ozone-containing gas into a liquid, wherein the liquid and ozone combination has a temperature between about 0.8 and about 1.5 times the critical temperature of ozone; and increasing isothermally, the pressure of the ozone-containing gas above the liquid to about 0.3 to about 5 times the critical pressure of ozone so as to increase the ozone concentration in the liquid. The temperature is expressed in absolute units (Kelvin or Rankin). The method can be used for removing ozone from a gas or for purifying ozone. The liquid having a high ozone concentration can be used for ozonolysis of a substrate.
Abstract:
In a first aspect, the present invention is directed to a process for forming a metal alloy catalyst. Another aspect of the present invention is directed to a process for oxidizing a substrate that includes contacting a substrate with an oxidant in the presence of a metal alloy catalyst to form one or more carboxylic acids. Suitable substrates include sugars, polyols, furfural alcohols, and polyhydroxycarboxylic acids. The oxidation process may use the alloy catalyst formed from the process of the first aspect of the invention.
Abstract:
A process for the ozonolysis of an alkane may comprise combining an alkane and ozone in a liquid phase medium comprising CO2 under conditions sufficient to oxidize the alkane to produce one or more non-combustion products. The liquid phase medium may be free of a super acid.
Abstract:
A process for the ozonolysis of an alkane may comprise combining an alkane and ozone in a liquid phase medium comprising CO2 under conditions sufficient to oxidize the alkane to produce one or more non-combustion products. The liquid phase medium may be free of a super acid.
Abstract:
Provided is a process for depolymerizing lignin, the process comprising exposing a liquid feed comprising lignin and a solvent to a metal-incorporated solid mesoporous silicate catalyst under conditions sufficient to depolymerize the lignin to produce one or more aromatic monomers.
Abstract:
Methods for gas-phase deoxygenation of a bio-oil are provided. In embodiments, such a method comprises exposing a bio-oil vapor comprising hydrocarbon compounds having oxygenated aromatic groups, to hydrogen gas in the presence of catalyst under conditions to induce deoxygenation of the oxygenated aromatic groups to provide a deoxygenated aromatic species, wherein the catalyst is a transition metal-incorporated mesoporous silicate having platinum deposited thereon and the transition metal is selected from Nb, W, Zr, and combinations thereof. The transition metal-incorporated mesoporous silicate catalysts are also provided.
Abstract:
Provided is a process for depolymerizing lignin, the process comprising exposing a liquid feed comprising lignin and a solvent to a metal-incorporated solid mesoporous silicate catalyst under conditions sufficient to depolymerize the lignin to produce one or more aromatic monomers.