Abstract:
The disclosure provides an approach for simulating a virtual environment. A method includes simulating, using a virtualization simulator, a plurality of hosts; simulating, using the virtualization simulator, a plurality of virtual computing instances (VCIs) associated with the plurality of simulated hosts, based on information obtained from a cluster application programming interface (API) provider; creating, using a virtualization simulator operator, one or more node simulator schedulers; creating, using the one or more node schedulers, a node simulator; simulating, using the node simulator, a plurality of guest operating systems (OSs) associated with the plurality of simulated VCIs; and joining the plurality of simulated guest OSs to one or more node clusters in a data center via an API server.
Abstract:
An approach is disclosed for steering network traffic away from congestion hot-spots to achieve better throughput and latency. In one embodiment, multiple Foo-over-UDP (FOU) tunnels, each having a distinct source port, are created between two endpoints. As a result of the distinct source ports, routers that compute hashes of packet fields in order to distribute traffic flows across network paths will compute distinct hash values for the FOU tunnels that may be associated with different paths. Probes are scheduled to measure network metrics, such as latency and liveliness, of each of the FOU tunnels. In turn, the network metrics are used to select particular FOU tunnel(s) to send traffic over so as to avoid congestion and high-latency hotspots in the network.
Abstract:
Techniques for stateful connection optimization over stretched networks are disclosed. In one embodiment, hypervisor filtering modules in a cloud computing system are configured to modify packets sent by virtual computing instances (e.g., virtual machines (VMs)) in the cloud to local destinations in the cloud such that those packets have the destination Media Access Control (MAC) address of a local router that is also in the cloud. Doing so prevents tromboning traffic flows in which packets sent by virtual computing instances in the cloud to location destinations are routed to a stretched network's default gateway that is not in the cloud.
Abstract:
Connectivity between data centers in a hybrid cloud system having a first data center managed by a first organization and a second data center managed by a second organization, the first organization being a tenant in the second data center, is optimized. According to the described technique, a path-optimized connection is established through a wide area network (WAN) between a first gateway of a first data center and a second gateway of a second data center for an application executing in the first data center based on performance of paths across a set of Internet Protocol (IP) flows. Application packets received from the application at the first gateway are forwarded to a WAN optimization appliance in the first data center. WAN optimized application packets received from the WAN optimization appliance at the first gateway are then sent to the second gateway over the path-optimized connection.
Abstract:
Techniques for stateful connection optimization over stretched networks are disclosed. Such stretched networks may extend across both a data center and a cloud. In one embodiment, configuration changes are made to cloud layer 2 (L2) concentrators used by extended networks and a cloud router such that the L2 concentrators block packets with the cloud router's source MAC address and block address resolution protocol (ARP) requests for a gateway IP address from/to cloud networks that are part of the extended networks. Further, the cloud router is configured with the same gateway IP address as that of a default gateway router in the data center and responds to ARP requests for the gateway IP address with its own MAC address. In addition, specific prefix routes (e.g., /32 routes) for virtual computing instances on route optimized networks in the cloud are injected into the cloud router and propagating to a data center router.
Abstract:
A cloud computing system retrieves routing entries associated with a particular tenant of the cloud computing system and are a subset of a routing table of the entire cloud computing system. The routing entries are loaded into a networking switch, which is configured to route network packets using the loaded subset of routing entries, using a general-purpose processor rather than a costly dedicated ASIC.
Abstract:
An example provides a method of creating an instance of a virtual machine in a cloud computing system that includes: accepting a network connection at a server resource in the cloud computing system from a first client resource in a first virtualized computing system to transfer a first virtual machine; receiving first signatures for guest files of the first virtual machine from the first client resource; checking the first signatures against a content library in the cloud computing system to identify first duplicate files of the guest files that match first base files stored in the content library, and to identify first unique files of the guest files; instructing the first client resource such that a response to the instructing will send the first unique files to the exclusion of the first duplicate files; and generating an instance of the first virtual machine in the cloud computing system having the first base files and the first unique files.
Abstract:
The disclosure provides an approach for diagnosing a data plane of a network, wherein the network spans a first data center and a second data center, and wherein the second data center is remote to the first, the method comprising: accessing a secure connection between the first data center and the second data center; modifying, by the first performance controller, firewall settings of the first data center from a first setting to a second setting; opening on the second data center an instance of a performance tool; opening on the first data center a client of the instance of the performance tool; sending data packets over the data plane of the network; receiving the data packets; generating metrics associated with the data packets; and modifying firewall settings of the first data center from the second setting to the first setting.
Abstract:
The disclosure provides an approach for preventing the failure of virtual computing instance transfers across data centers. In one embodiment, a flow control module collects performance information primarily from components in a local site, as opposed to components in a remote site, during the transfer of a virtual machine (VM) from the local site to the remote site. The performance information that is collected may include various performance metrics, each of which is considered a feature. The flow control module performs feature preparation by normalizing feature data and imputing missing feature data, if any. The flow control module then inputs the prepared feature data into machine learning model(s) which have been trained to predict whether a VM transfer will succeed or fail, given the input feature data. If the prediction is that the VM transfer will fail, then remediation actions may be taken, such as slowing down the VM transfer.
Abstract:
Connectivity between data centers in a hybrid cloud system is optimized by pre-loading a wide area network (WAN) optimization appliance in a first data center with data to initialize at least one WAN optimization of application. The first data center is managed by a first organization and a second data center managed by a second organization, the first organization being a tenant in the second data center. The described technique includes receiving application packets having the application data generated by an application executing in the first data center at the WAN optimization appliance from a first gateway in the first data center, and performing the at least one WAN optimization on the application packets using the pre-loaded data to initialize the at least one WAN optimization.