Abstract:
Devices, systems, apparatuses, methods, and other embodiments associated with bit resolution enhancement are described. In one embodiment, an apparatus includes logic configured to produce a high-resolution pixel from a low-resolution pixel. The apparatus includes logic configured to classify the high-resolution pixel as being in a smooth region of an image based on at least one of a gradient value and a variance value associated with the low-resolution pixel. The apparatus includes logic configured to selectively re-classify the high-resolution pixel as not being in the smooth region of the image based on a set of neighboring high-resolution pixels associated with high-resolution pixel. The apparatus includes logic configured to selectively filter the high-resolution pixel based on whether the high-resolution pixel remains classified as being in the smooth region of the image.
Abstract:
Techniques described in the disclosure are generally related to enhancing portions of an image relative to other portions of the image. The example techniques may utilize depth information in conjunction with one or more viewer perceivable information to enhance portions of the image relative to other portions. The techniques may then display the enhanced image to provide the viewer with a possibly more realistic image.
Abstract:
To improve contrast ratio of the image on a backlit display plane such as a liquid crystal display (“LCD”), each area of the image that has separately controllable backlight may be given full backlight until an average or composite brightness of the image in that area is less than a threshold value at which light leakage through the image from full-strength backlight begins to be noticable by a viewer. For image areas with composite brightness less than that threshold, backlight brightness may be reduced in proportion to how much below the threshold the area's composite image brightness is. Backlight brightness may also be adjusted for other image aspects such as (1) the presence of bright pixels in an otherwise relatively dark area, (2) whether the area is adjacent to one or more other areas in which the image information is in motion, and/or (3) time-averaging of image information over several successive frames of such information.
Abstract:
A system including a quality estimation module configured to estimate a visual quality of video content based on data from a decoder module. The system further including a settings database configured to store a plurality of predetermined settings. The settings database outputs at least one of the predetermined settings in response to the visual quality. The system further including a video post-processor module configured to automatically adjust settings of the video post-processor module based on the at least one of the predetermined settings. The video content is processed based on the settings of the video post-processor module that were automatically adjusted.
Abstract:
An inter mode for encoding a video macroblock is selected. An initial analysis on the macroblock homogeneity is performed to quickly reduce the number of inter modes for which motion estimation and rate distortion calculation are to be performed. An inter mode is selected based on these calculations and sub-pixel motion estimation, at various sub-pixel interpolation granularities, is performed only on the selected inter mode. Sub-pixel motion estimation may be skipped for macroblocks that exhibit relatively low distortion at the integer pixel level.
Abstract:
A three-dimensional filter that addresses various types of noise is described. This filter uses both spatial and temporal characteristics of the video signal in the filtering process. Additionally, the filter is able to maintain edge fidelity within in images in the video signal.
Abstract:
A method for encoding video data to reduce blocking artifacts is provided. The method initiates with identifying a macro-block as being associated with a blocking artifact. For example the macro-block may be identified as a low activity macro-block or a high activity macro-block. Then, blocking artifacts introduced through a compression operation are mitigated by adjusting both a quantization parameter and an amount of bits generated from the quantization parameter. A video encoder and a system for processing image data associated with block based compression are provided.
Abstract:
An interactive photo system that provides an interesting and entertaining way to link photos from the digital and analog domains. The system enables easy conversion of a paper-based photo into digital form. The conversion process generally involves a user holding up a paper-based photo image in front of a camera of the system, such that the captured image is rendered in a specific location on a display screen. The system adjusts the captured image for orientation and illumination irregularities in creating a digital version of the paper-based photo. The system further includes a database of digital images and a content retrieval engine to which content from the just-converted digital image can be used as a search query to search the database for other similar digital photos.
Abstract:
A power-scalable hybrid technique to reduce blocking and ringing artifacts in low bit-rate block-based video coding is employed in connection with a modified decoder structure. Fast inverse motion compensation is applied directly in the compressed domain, so that the transform (e.g., DCT) coefficients of the current frame can be reconstructed from those of the previous frame. The spatial characteristics of each block is calculated from the DCT coefficients, and each block is classified as either low-activity or high-activity. For each low-activity block, its DC coefficient value and the DC coefficient values of the surrounding eight neighbor blocks are exploited to predict low frequency AC coefficients which reflect the original coefficients before quantization in the encoding stage. The predicted AC coefficients are inserted into the low activity blocks where blocking artifacts are most noticeable. Subject to available resources, this may be followed by spatial domain post-processing, in which two kinds of low-pass filters are adaptively applied, on a block-by-block basis, according to the classification of the particular block. Strong low-pass filtering is applied in low-activity blocks where the blocking artifacts are most noticeable, whereas weak low-pass filtering is applied in high-activity blocks where ringing noise as well as blocking artifacts may exist. In low activity blocks, the blocking artifacts are reduced by one dimensional horizontal and vertical low-pass filters which are selectively applied in either the horizontal and/or vertical direction depending on the locations and absolute values of the predicted AC coefficients. In high activity blocks, de-blocking and de-ringing is conducted by 2- or 3-tap filters, applied horizontally and/or vertically, which makes the architecture simple.
Abstract:
A layered presentation system (LAPE) includes a server that performs compressed-domain image processing on image data received from multiple clients including a master client and other clients to generate a composite image that incorporates imagery from the other clients with a master image from the master client for viewing on a shared display. The system's clients can add imagery in the form of questions, comments, and graphics to a currently displayed image. The added imagery is processed along with the master image to generate the composite image that then appears on the shared display and perhaps also on each client's individual display. The processing includes scaling the master image/added imagery, as required, and blending and/or overlaying the added imagery onto the master image so as to augment but not obscure it. A network protocol is included for sending image data in the compressed domain back and forth between the server and each of the clients.