摘要:
An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's heart rate response. Such evaluation may be performed by computing a heart rate response slope, defined as the ratio of an incremental change in intrinsic heart rate to an incremental change in measured activity level. The heart rate response slope may then be compared with a normal range to assess the patient's functional status.
摘要:
An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's heart rate response. Such evaluation may be performed by computing a heart rate response slope, defined as the ratio of an incremental change in intrinsic heart rate to an incremental change in measured activity level. The heart rate response slope may then be compared with a normal range to assess the patient's functional status.
摘要:
An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's heart rate response. Such evaluation may be performed by computing a heart rate response slope, defined as the ratio of an incremental change in intrinsic heart rate to an incremental change in measured activity level. The heart rate response slope may then be compared with a normal range to assess the patient's functional status.
摘要:
An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's heart rate response. Such evaluation may be performed by computing a heart rate response slope, defined as the ratio of an incremental change in intrinsic heart rate to an incremental change in measured activity level. The heart rate response slope may then be compared with a normal range to assess the patient's functional status.
摘要:
A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.
摘要:
A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.
摘要:
A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.
摘要:
This document discusses, among other things, methods of monitoring physiological responses to steady state activity. In an example, a physical activity signal is detected from a human or animal subject using an implantable medical device. A different, other physiological signal is also detected from the subject using the implantable medical device. The physical activity signal is processed to define first and second time periods associated with first and second steady-state physical activity levels of the subject. A first indicator is obtained by combining data from the other physiological signal obtained during the first time period. A second indicator is obtained by combining data from the other physiological signal obtained during the second time period. The first and second indicators are used provide a diagnostic indicator.
摘要:
Changes in patient status are assessed based at least in part on respiration parameters. A user can make selections regarding alert criteria options to be used in assessing patient status. Respiration is implantably sensed and respiration data is stored by an implantable device. A respiration parameter, such as respiration rate, is measured from the respiration data. The change in patient status is assessed by comparing the respiration parameter to the configured alert criteria. If the comparison of the respiration parameter and the configured alert criteria indicates a significant change in patient status, an alert signal is generated.
摘要:
An implantable device monitors the balance between sympathetic tone and parasympathetic tone as a function of an activity level. Cardio-neurological healthy users exhibit a generally sympathetic tone in conjunction with heavy activity level and a generally parasympathetic tone in conjunction with periods of low activity level. Deviations from expected results are associated with a health problem. Measured conditions are stored and available for subsequent reporting to a remote programmer. Therapy delivered by an implantable device is determined as a function of the relationship between autonomic balance and activity level.