摘要:
A system and method for providing energy to auto systems such as systems after-treating exhaust. Energy may be received from a solar energy source electrically connected to an after-treatment system. At least some of the energy from the solar energy source may be provided to the after-treatment system to purify exhaust from an engine. A control module may provide at least some of the energy from the solar energy source to a heater, for example, to initiate heating the after-treatment system prior to starting the engine. The heater may heat the after-treatment to temperatures within a predetermined temperature range associated with optimal efficiency for the after-treatment system.
摘要:
An internal combustion engine vehicle or hybrid-electric vehicle is provided with a vehicle-mounted solar cell array capable of generating electrical power. The solar cell array and other elements, including a metal substrate catalytic convertor form a system for reducing exhaust gas emissions from the vehicle in which the power from the array is applied to minimize exhaust emissions. A primary application of the solar cell array-generated power is to preheat the catalytic convertor to a preferred operating temperature prior to engine start. But the power from the solar cells, directed by a controller, may also be applied to charge the battery or to power electric power receiving devices, for example, to control cabin temperatures. The preferred allocation of the solar power available depends on a number of factors including the state of charge of the batteries, and the time of anticipated next use of the vehicle.
摘要:
A method for controlling a powertrain of a hybrid vehicle having an engine, a motor/generator, a battery that is rechargeable using at least one of the engine and the motor/generator, and a powertrain control module (PCM) includes determining a current location of the vehicle as a starting point of a preferred route, recording a user-selected ending point of the preferred route, and processing route information using the PCM to thereby determine an optimally fuel efficient route for reaching the ending point. The method includes automatically executing the powertrain control strategy over the optimally fuel efficient route by substantially depleting a charge level of the battery as the vehicle travels over the optimally fuel efficient route such that the charge level of the battery is depleted when the vehicle reaches the ending point. When the ending point is not recorded, the PCM can default to a charge-sustaining mode.