摘要:
The present disclosure is directed to epitope-tagged antibodies, as well as methods of employing the epitope-tagged antibodies for detecting one or more targets in a biological sample, e.g. a tissue sample.
摘要:
Disclosed herein are methods and compositions for detecting differential expression of certain miRNAs in cancer cells or their surrounding normal tissues in the tumor microenvironment. The disclosure describes an automated, highly sensitive and specific method for detection of any cellular RNA molecule, including microRNA, messenger RNA and non-coding RNA. The technology includes probe design as well as probe use in an automated fashion for detection of RNA molecules in formalin-fixed paraffin-embedded tissue (FFPET) samples.
摘要:
Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
摘要:
Disclosed herein are methods and compositions for detecting differential expression of certain miRNAs in cancer cells or their surrounding normal tissues in the tumor microenvironment. The disclosure describes an automated, highly sensitive and specific method for detection of any cellular RNA molecule, including microRNA, messenger RNA and non-coding RNA. The technology includes probe design as well as probe use in an automated fashion for detection of RNA molecules in formalin-fixed paraffin-embedded tissue (FFPET) samples.
摘要:
The present disclosure provides nucleic acid probes, as well as kits that include such probes. Methods for producing and using (for example in chromosomal in situ hybridization) the probes are also provided. Such probes in some examples are used to detect chromosomal abnormalities or the presence of a pathogen.
摘要:
Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
摘要:
Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
摘要:
A method for performing a multiplexed diagnostic assay, such as for two or more different targets in a sample, is described. One embodiment comprised contacting the sample with two or more specific binding moieties that bind specifically to two or more different targets. The two or more specific binding moieties are conjugated to different haptens, and at least one of the haptens is an oxazole, a pyrazole, a thiazole, a nitroaryl compound other than dinitrophenyl, a benzofurazan, a triterpene, a urea, a thiourea, a rotenoid, a coumarin, a cyclolignan, a heterobiaryl, an azo aryl, or a benzodiazepine. The sample is contacted with two or more different anti-hapten antibodies that can be detected separately. The two or more different anti-hapten antibodies may be conjugated to different detectable labels.
摘要:
The present invention provides probes and probe systems for detection of nucleic acids, and in particular probes and probe systems comprising target nucleic acid probes which comprise a plurality of detection sequences and detection nucleic acid probes which hybridize to the detection sequences of the target nucleic acid probes and which further comprise a plurality of detectable moieties, such as haptens.
摘要:
A proximity detection method is described that utilizes enzymatic biotinylation to detect targets in a sample, particularly formalin fixed paraffin embedded samples using automated staining platforms. One disclosed embodiment comprises contacting the sample with a first conjugate comprising a biotin ligase and a first specific binding moiety that binds proximally to the first target; contacting the sample with a second conjugate comprising a biotin ligase substrate and a second specific binding moiety that binds proximally to the second target; subjecting the sample to conditions that allow biotinylation of the biotin ligase substrate by the biotin ligase when the first target and the second target have a proximal arrangement; and detecting biotinylation of the biotin ligase substrate. The conditions that allow biotinylation of the substrate include addition of biotin and ATP. The method also may comprise contacting the sample with a streptavidin-enzyme conjugate. Signal amplification also can be used.