Abstract:
A method, a device, and a non-transitory storage medium are described in which an capacity modification service is provided in relation to a virtual device. The capacity modification service may include a first virtual device of a host device that is able to a receive resource modification request directed to a second virtual device of the host device. The modification request may be received via user interface or application programming interface associated with the first and second virtual devices. The first virtual device may calculate resource values for resources of the prospective resource modification. The first virtual device may communicate the resource values to management layer of the host device, such as a container orchestrator. The container orchestrator may allocate the resources for the second virtual device based on the resource values.
Abstract:
A system described herein may provide a technique for a selection of an Interworking Function (“IWF”) that facilitates an interworking between a licensed wireless network and another wireless network, such as an unlicensed wireless network, based on a geographical location of a User Equipment (“UE”) that is connected to the licensed wireless network and the other wireless network. The IWF may be selected from a set of candidate IWFs based on respective locations of the candidate IWFs and the UE and/or a wireless access point associated with the other wireless network. The IWF may communicate with the UE, via the other wireless network, using one or more tunnels. The IWF may identify control plane and user plane traffic received via the tunnel(s), and may forward such communications to appropriate network devices of the licensed wireless network.
Abstract:
Systems and method are provided for a temporary network slice usage barring service within a core network. A network device in the core network receives a slice barring information message for an application function (AF). The slice barring information message includes a unique subscriber identifier associated with a user equipment (UE) device to be barred from a network slice and indicates a barring expiration time. The network device stores barring parameters based on the slice barring information message. The barring parameters include a slice identifier associated with the AF, the unique subscriber identifier, and the barring expiration time. The network device sends a barring instruction message to another network device associated with the network slice. The barring instruction message includes the unique subscriber identifier and the barring expiration time. The other network device enforces temporary barring of the UE device from the network slice based on the barring instruction message.
Abstract:
Systems and methods described herein include receiving, from a first network function, a request to receive a notification when a second network function becomes available after a failure. A status update may be received from the second network function indicating that the second network function is available. It may be determined that the second network function is in a stable state. A notification may be sent, to the first network function, that the second network function is available along with an indication of a time period in which to switch from accessing a third network function to accessing the second network function.
Abstract:
A method, a network device, and a non-transitory computer-readable storage medium are described in relation to a low latency, low loss, and scalable throughput (LI4S)-triggered prioritized connection service. The LI4S-triggered prioritized connection service may enable an evolved packet data gateway (ePDG) to provision prioritized and non-prioritized tunnels with end devices via untrusted wireless local area networks. The prioritized tunnel may support LI4S or another quality of service in which the ePDG may provide prioritized data forwarding. The end device may transmit a request that includes priority data.
Abstract:
Systems and method are provided for a temporary network slice usage barring service within a core network. A network device in the core network receives a slice barring information message for an application function (AF). The slice barring information message includes a unique subscriber identifier associated with a user equipment (UE) device to be barred from a network slice and indicates a barring expiration time. The network device stores barring parameters based on the slice barring information message. The barring parameters include a slice identifier associated with the AF, the unique subscriber identifier, and the barring expiration time. The network device sends a barring instruction message to another network device associated with the network slice. The barring instruction message includes the unique subscriber identifier and the barring expiration time. The other network device enforces temporary barring of the UE device from the network slice based on the barring instruction message.
Abstract:
A device may receive, from a mobile device and via a first radio access network, a request for a service. The device may receive a mobile device identifier that identifies the mobile device on a second radio access network. The second radio access network may be a different type of radio access network than the first radio access network. The device may provide the mobile device identifier to an equipment identity register. The device may receive, from the equipment identity register, an authentication indicator that indicates whether to permit or deny access to the service by the mobile device and via the first radio access network. The device may selectively permit or deny the mobile device access to the service, via the first radio access network, based on the authentication indicator.
Abstract:
A system may receive call setup information associated with a call to be received by a terminating device via a particular untrusted wireless local area network (WLAN). The system may determine location information, associated with the terminating device, based on receiving the call setup information. The location information may include information that identifies the particular untrusted WLAN to which the terminating device is connected. The system may provide the call setup information to the terminating device via the particular untrusted WLAN. The call setup information may be provided to the terminating device based on the location information associated with the terminating device and may be provided to cause a tunnel to be created. The tunnel, when created, may allow the terminating device to receive the call via the particular untrusted WLAN. The system may cause the call to be received by the terminating device via the tunnel and the particular untrusted WLAN.
Abstract:
A method may include establishing, for a user equipment (UE) device, a data session via a network and determining whether the network is congested or overloaded. The method may also include instructing the UE device to re-register for a Category M1 (Cat-M1) data session, in response to determining that the network is congested or overloaded.
Abstract:
Systems and methods described herein include receiving, from a first network function, a request to receive a notification when a second network function becomes available after a failure. A status update may be received from the second network function indicating that the second network function is available. It may be determined that the second network function is in a stable state. A notification may be sent, to the first network function, that the second network function is available along with an indication of a time period in which to switch from accessing a third network function to accessing the second network function.