摘要:
A hypothetical profile is used to model the profile of a structure formed on a semiconductor wafer to use in determining the profile of the structure using optical metrology.To select a hypothetical profile, sample diffraction signals are obtained from measured diffraction signals of structures formed on the wafer, where the sample diffraction signals are a representative sampling of the measured diffraction signals. A hypothetical profile is defined and evaluated using a sample diffraction signal from the obtained sample diffraction signals.
摘要:
A hypothetical profile is used to model the profile of a structure formed on a semiconductor wafer to use in determining the profile of the structure using optical metrology. To select a hypothetical profile, sample diffraction signals are obtained from measured diffraction signals of structures formed on the wafer, where the sample diffraction signals are a representative sampling of the measured diffraction signals. A hypothetical profile is defined and evaluated using a sample diffraction signal from the obtained sample diffraction signals.
摘要:
Specific wavelengths to use in optical metrology of an integrated circuit can be selected using one or more selection criteria and termination criteria. Wavelengths are selected using the selection criteria, and the selection of wavelengths is iterated until the termination criteria are met.
摘要:
Specific wavelengths to use in optical metrology of an integrated circuit can be selected using one or more selection criteria and termination criteria. Wavelengths are selected using the selection criteria, and the selection of wavelengths is iterated until the termination criteria are met.
摘要:
Specific wavelengths to use in optical metrology of an integrated circuit can be selected using one or more selection criteria and termination criteria. Wavelengths are selected using the selection criteria, and the selection of wavelengths is iterated until the termination criteria are met.
摘要:
A profile model for use in optical metrology of structures in a wafer is selected, the profile model having a set of geometric parameters associated with the dimensions of the structure. The set of geometric parameters is selected to a set of optimization parameters. The number of optimization parameters within the set of optimization parameters is less than the number of geometric parameters within the set of geometric parameters. A set of selected optimization parameters is selected from the set of optimization parameters. The parameters of the set of selected geometric parameters are used as parameters of the selected profile model. The selected profile model is tested against one or more termination criteria.
摘要:
A profile model for use in optical metrology of structures in a wafer is selected, the profile model having a set of geometric parameters associated with the dimensions of the structure. The set of geometric parameters is selected to a set of optimization parameters. The number of optimization parameters within the set of optimization parameters is less than the number of geometric parameters within the set of geometric parameters. A set of selected optimization parameters is selected from the set of optimization parameters. The parameters of the set of selected geometric parameters are used as parameters of the selected profile model. The selected profile model is tested against one or more termination criteria.
摘要:
A profile model for use in optical metrology of structures in a wafer is selected, the profile model having a set of geometric parameters associated with the dimensions of the structure. A set of optimization parameters is selected for the profile model using one or more input diffraction signals and one or more parameter selection criteria. The selected profile model and the set of optimization parameters are tested against one or more termination criteria. The process of selecting a profile model, selecting a set of optimization parameters, and testing the selected profile model and set of optimization parameters is performed until the one or more termination criteria are met.
摘要:
A structure formed on a semiconductor wafer is examined by obtaining a first diffraction signal measured using a metrology device. A second diffraction signal is generated using a machine learning system, where the machine learning system receives as an input one or more parameters that characterize a profile of the structure to generate the second diffraction signal. The first and second diffraction signals are compared. When the first and second diffraction signals match within a matching criterion, a feature of the structure is determined based on the one or more parameters or the profile used by the machine learning system to generate the second diffraction signal.
摘要:
A structure formed on a semiconductor wafer is examined by obtaining a first diffraction signal measured using a metrology device. A second diffraction signal is generated using a machine learning system, where the machine learning system receives as an input one or more parameters that characterize a profile of the structure to generate the second diffraction signal. The first and second diffraction signals are compared. When the first and second diffraction signals match within a matching criterion, a feature of the structure is determined based on the one or more parameters or the profile used by the machine learning system to generate the second diffraction signal.