摘要:
Special high performance wavelength shifting compositions has been discovered and devised. Further, these compositions when properly distributed in a bulk medium having cooperative properties forms new media having totally unique and useful characteristics. In particular, a special phosphor is devised having a dual peak spectral output when stimulated with high energy photonic input. A dual activator formula is created such that simple manipulation of specified ratios permits flexibility in tuning of color temperature output of the phosphor emitter combination. When prepared with preferred particle sizes and densities, performance improvements are observed. Finally, these phosphors are combined with other special binder materials to form colloid media with well designed optical interaction cross section whereby light emitted from a high intensity blue diode semiconductor will experience just enough wavelength shift in precisely the desired portions of the spectrum, with high efficiency, to form a white LED not found in other systems.
摘要:
Light emitting diodes are prepared with specialized packages which provide a dosing feature with respect to a phosphor wavelength converting medium. Elements of the device package form a specially shaped cavity when coupled together. The shape and size of the cavity operates to control the dosing of phosphor spiked medium of soft gel. The gel fills the cavity such that light emitted from a semiconductor die is exposed to a similar cross section independent of the exact direction of light propagation. In this way, ‘white’ LED systems are formed from blue emitting diodes as highly controlled phosphor dosing permits precise amounts of blue light to be converted to yellow light without problems with angular uniformity observed in competing technologies.