摘要:
An organic light emitting device (OLED) having an inverted structure including a cathode layer which is deposited on a substrate and on top of which an electron transporting layer (ETL), an electroluminescent (EL) layer, a hole transporting layer (HTL), a protection layer and an anode are deposited in sequence. The inverted OLED (IOLED) provides improved longevity, flexibility and efficiency over conventional OLEDs.
摘要:
An organic light emitting device (OLED) structure having reflective surfaces is fabricated in a pit formed in a substrate. The pit has slanted reflective side walls which redirect light that is waveguided in the organic layers of the OLED to a direction substantially normal to the plane of the substrate. The reflective structure can also be formed with a planar configuration over interconnects covered with a polyimide.
摘要:
A multicolor organic light emitting display device employs angle-walled blue, green and red emitting mesas, with optional metal reflectors on the angled walls, in a plurality of pixels. The angle-walled mesas, which resemble truncated pyramids, direct light out of the mesa by reflection from the mesa side walls or by mirror reflection. The device of the present invention reduces waveguiding, thus simultaneously increasing both display brightness and resolution.
摘要:
A multicolor organic light emitting display device employs angle-walled blue, green and red emitting mesas, with optional metal reflectors on the angled walls, in a plurality of pixels. The angle-walled mesas, which resemble truncated pyramids, direct light out of the mesa by reflection from the mesa side walls or by mirror reflection. The device of the present invention reduces waveguiding, thus simultaneously increasing both display brightness and resolution.
摘要:
Monochromatic and multicolor light emitting devices which make use of phosphor layers to downconvert light emitted from organic light emitting materials into different, more desired colors. The light emitting devices of the present invention are used in a variety of applications to provide displays with high brightnesses and efficiencies.
摘要:
An optically-pumped laser having a small-molecule thin organic film of DCM doped Alq3. Carrier transport properties of the small-molecule organic materials, combined with a low lasing threshold provide a new generation of diode lasers employing organic thin films. An electrically-pumped variant is also described.
摘要:
Organic vertical-cavity surface-emitting lasers ("OVCSELs"), in which a thin layer of organic material is disposed between highly reflective mirrors to thereby form a vertical cavity within a stacked arrangement. The lasers of the present invention each comprise a first mirror layer; a layer of active organic material over the first mirror layer; and a second mirror layer over the layer of first active organic material. The active organic material lases when pumped to thereby produce laser light. The present invention provides for optical semiconductor lasers with desired properties such as narrow bandwidth emission, the minimal use of active organic materials, and the facilitation of wavelength tuning and electrical pumping.
摘要:
A patterning system with a photoresist overhang allows material to be deposited onto a substrate in various positions by varying the angle from which the material is deposited, and by rotating the substrate. The patterning system can be used to fabricate a stack of organic light emitting devices on a substrate using the same patterning system and without removing the substrate from vacuum.
摘要:
An optically-pumped laser having a small-molecule thin organic film of DCM doped Alq.sub.3. Carrier transport properties of the small-molecule organic materials, combined with a low lasing threshold provide a new generation of diode lasers employing organic thin films. An electrically-pumped variant is also described.
摘要:
A patterning system with a photoresist overhang allows material to be deposited onto a substrate in various positions by varying the angle from which the material is deposited, and by rotating the substrate. The patterning system can be used to fabricate a stack of organic light emitting devices on a substrate using the same patterning system and without removing the substrate from vacuum.