摘要:
A method for fabricating a boron-contained silicate glass layers, such as borosilicate and borophosphosilicate glass films at low temperature using High Density Plasma CVD with silane derivatives as a source of silicon, boron and phosphorus compounds as a doping compounds, oxygen is described. RF plasma with certain plasma density is maintained throughout the entire deposition step in reactor chamber. Key feature of the invention's process is a flow capability of boron-contained silicate glass materials which provide a film with good film integrity and void-free gap-fill within the steps of device structures after low temperature thermal budget anneal conditions.
摘要:
This invention relates to a method of fabrication used for semiconductor integrated circuit devices, and more specifically to an improved method of filling shallow trenches, in shallow trench isolation, STI sub-quarter micron technology. The present method relates to a process for forming trench gap filling with chemically vapor deposited (CVD) silicon dioxide layers within trenches within substrates employed in integrated circuit fabrication. There is first provided a silicon substrate having a trench formed therein. There is then formed a silicon dioxide layer through tetraethylorthosilicate (TEOS) and ozone reaction, at either sub-atmospheric, or atmospheric pressure, with enhanced surface sensitivity features, which lines the trench providing corner rounding. Then there is a thermal oxidation to form within the trench a thermal silicon dioxide layer underneath the TEOS-ozone trench silicon dioxide liner. Finally, there is formed on top of the trench a silicon dioxide layer formed by either low pressure CVD using TEOS, or non-surface sensitive TEOS ozone CVD, or a high-density plasma CVD process. All layers are further annealed to form a void-free trench fill.
摘要:
A method for fabricating a silicon oxide and silicon glass layers at low temperature using High Density Plasma CVD with silane or inorganic or organic silane derivatives as a source of silicon, inorganic compounds containing boron, phosphorus, and fluorine as a doping compounds, oxygen, and gas additives is described. RF plasma with certain plasma density is maintained throughout the entire deposition step in reactor chamber. Key feature of the invention's process is a silicon source to gas additive mole ratio, which is maintained depending on the used compound and deposition process conditions. Inorganic halide-containing compounds are used as gas additives. This feature provides the reaction conditions for the proper reaction performance that allows a deposition of a film with. good film integrity and void-free gap-fill within the steps of device structures.
摘要:
A method for fabricating a silicon oxide and silicon glass layers at low temperature using soft power-optimized Plasma-Activated CVD with a TEOS-ozone-oxygen reaction gas mixture (TEOS O3/O2 PACVD) is described. It combines advantages of both low temperature Plasma-Enhanced Chemical Vapor Deposition (PECVD) and TEOS-ozone Sub-Atmospheric Chemical Vapor Deposition (SACVD) and yields a coating of silicon oxide with stable and high deposition rate, no surface sensitivity, good film properties, conformal step coverage and good gap-fill. Key features of the invention's O3/O2 PACVD process are: a plasma is maintain throughout the entire deposition step in a parallel plate type reactor chamber, the precise RF plasma density, ozone concentration in oxygen and the deposition temperature. These features provide the reaction conditions for the proper O3/O2 reaction mechanism that deposits a conformal silicon oxide layer. The process has significant implication for semiconductor device manufacturing involving the deposition of a dielectric over a conducting non-planar surface.