摘要:
The present invention relates to cloning target nucleic acids using phage packaging mechanisms. Packaging initiation sites may be introduced into the target DNA. Components of a phage packaging system may be combined with the target DNA to package the DNA into phage capsids. The packaged DNA may be used to create a library of target nucleic acids, or it may be sequenced.
摘要:
The present invention relates generally to the field of molecular biology and genomics. More specifically, the present invention concerns the cloning of nucleic acid molecules and the production of nucleic acid libraries, as well as the expression of recombinant proteins and bactofection.
摘要:
A single-copy BAC vector (containing or lacking an insert) is converted in a host cell into a conditional high-copy BAC vector by introducing a conditional origin of replication into the single-copy BAC vector. The conditional ori is introduced by site-specific recombination between the SC BAC vector and a vector that contains the conditional ori. The host cell comprises a recombinase that recognizes a site-specific recombination site on both the BAC vector and the conditional ori vector. In the presence of the recombinase, the conditional ori-containing vector recombines into the BAC vector to produce a high-copy BAC vector that can be conditionally amplified by activating the conditional origin of replication on command.
摘要:
The present invention relates to methods and constructs for sequencing, mapping and ordering polynucleotide sequences. The invention finds particular applicability in analysis of repetitive DNA sequences such as heterochromatic sequences.
摘要:
A system for obtaining large amounts of a genomic DNA fragment from a bacterial artificial chromosome includes a vector that has a site into which the genomic fragment can be cloned and, flanking the site are excision mediating sites. The vector also includes, between the excision mediating sites and near one of the sites, a controllable origin of replication.
摘要:
A universal restriction endonuclease for cleaving a target DNA at a predetermined site. The universal restriction endonuclease utilizes a tailored oligodeoxynucleotide adapter in conjunction with a restriction enzyme which cuts DNA at a known distance from its recognition site. The oligodeoxynucleotide adapter mimics the relationship which exists in such enzymes between its recognition site and cut site.