摘要:
The present invention relates to a 2,2′,6,6′-tetrasubstituted aminophosphine ligand and its synthesis method. The structure of the ligand is shown as below. Its synthesis method comprises: Step (1) coupling 2,6-dinitrochlorobenzene as the starting material to obtain 2,2′,6,6′-tetranitrobiphenyl; Step (2): hydrogenating the 2,2′,6,6′-tetranitrobiphenyl with Pd/C to obtain 2,2′,6,6′-tetraminobiphenyl; Step (3): reacting the 2,2′,6,6′-tetraminobiphenyl with a phosphine halide to obtain the 2,2′,6,6′-tetrasubstituted aminophosphine ligand. The ligand of the present invention is an achiral compound, and its preparation method is simple. The ligand can be converted to a chiral bimetallic catalyst with single configuration eventually through introduction of external chirality. Moreover, the ligand can be used in various asymmetric reaction catalyzed by metals with high reactivity and stereoselectivity.
摘要:
The present invention relates to a 2,2′,6,6′-tetrasubstituted aminophosphine ligand and its synthesis method. The structure of the ligand is shown as below. Its synthesis method comprises: Step (1) coupling 2,6-dinitrochlorobenzene as the starting material to obtain 2,2′,6,6′-tetranitrobiphenyl; Step (2): hydrogenating the 2,2′,6,6′-tetranitrobiphenyl with Pd/C to obtain 2,2′,6,6′-tetraminobiphenyl; Step (3): reacting the 2,2′,6,6′-tetraminobiphenyl with a phosphine halide to obtain the 2,2′,6,6′-tetrasubstituted aminophosphine ligand. The ligand of the present invention is an achiral compound, and its preparation method is simple. The ligand can be converted to a chiral bimetallic catalyst with single configuration eventually through introduction of external chirality. Moreover, the ligand can be used in various asymmetric reaction catalyzed by metals with high reactivity and stereoselectivity.
摘要:
The invention affords C2-symmetrical ruthenocene diphosphine ligands with surface chirality and their manufacture. The present invention uses (S)—(S)-1,1′-2(diphenylphosphino)-2,2′-2[(S)-4-isopropyloxazolinyl]ruthenocene as raw material and the product is prepared through two or three steps of reaction. At the action of trifluoroacetic acid, (S)—(S)-1,1′-2(diphenylphosphino)-2,2′-2[(S)-4-isopropyloxazolinyl]ruthenocene first removes oxazoline and gets ester amides compound which then carries out ester exchange or reduction alkylation and gets the product of ruthenocene diphosphine ligand with surface chirality. The ligands prepared with the structure as follows from the invention can be used in all kinds of metallic catalysis asymmetric reaction and has good reaction activity and stereoselectivity, wherein R is methyl or ethyl, R1 is linear or branched alkyl, cycloalkyl, alkoxy, aryl, aralkyl and alkyl amino.
摘要:
The invention affords C2-symmetrical ruthenocene diphosphine ligands with surface chirality and their manufacture. The present invention uses (S)-(S)-1,1′-2(diphenylphosphino)-2,2′-2[(S)-4-isopropyloxazolinyl] ruthenocene as raw material and the product is prepared through two or three steps of reaction. At the action of trifluoroacetic acid, (S)-(S)-1,1′-2(diphenylphosphino)-2,2′-2[(S)-4-isopropyloxazolinyl] ruthenocene first removes oxazoline and gets ester amides compound which then carries out ester exchange or reduction alkylation and gets the product of ruthenocene diphosphine ligand with surface chirality. The ligands prepared with the structure as follows from the invention can be used in all kinds of metallic catalysis asymmetric reaction and has good reaction activity and stereoselectivity, wherein R is methyl or ethyl, R1 is linear or branched alkyl, cycloalkyl, alkoxy, aryl, aralkyl and alkyl amino.
摘要:
The invention relates to an asymmetric hydrogenation method for ketone compounds, comprising the step of: under hydrogen atmosphere, in the presence of an in situ catalyst derived from a chiral ligand and a ruthenium salt, adding a ketone compound and a base into a second solvent to carry out an asymmetric hydrogenation for the ketone compound. The invention can obtain a conversion of 100% and a highest asymmetric inducement effect of 99.7% for the ketone compound. The invention has the advantages including simple procedure, high conversion and selectivity, good atom economy and good prospect of industrial application.
摘要:
The present invention relates to a 5,5′-position linked 1,1′-biphenyl axis chiral ligand in chemical industry field. The present invention incorporates both the central chirality of oxazoline and the axial chirality of diphenyls. Such ligand can be used in various asymmetric reactions catalyzed by metal with high reactivity and stereoselectivity, and thus represents a good application outlook.The ligand of the present invention has the formula of: wherein: n=5, 6, 7, 8, 9, 10, 11 or 12; R1=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R2=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R3=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R4=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl.
摘要:
The invention relates to an asymmetric hydrogenation method for ketone compounds, comprising the step of: under hydrogen atmosphere, in the presence of an in situ catalyst derived from a chiral ligand and a ruthenium salt, adding a ketone compound and a base into a second solvent to carry out an asymmetric hydrogenation for the ketone compound. The invention can obtain a conversion of 100% and a highest asymmetric inducement effect of 99.7% for the ketone compound. The invention has the advantages including simple procedure, high conversion and selectivity, good atom economy and good prospect of industrial application.
摘要:
The present invention relates to a method for preparing 2,2′,6,6′-tetraoxazolinyl biphenyl ligand in chemical industry field. In the present invention, compound (III) is reacted with an activator that can activate the hydroxyl group selected from the group consisting of alkyl halosulfonium compound, aryl halosulfonium compound, phosphoryl chloride, phosphorus pentachloride, thionyl chloride and triphenyl phosphine, in the presence of alkali(s), to give the target product (IV), 2,2′,6,6′-tetraoxazolinyl biphenyl ligand. The ligand of the present invention can be used in various asymmetric reactions catalyzed by metals, with high reactivity and stereoselectivity, and thus represents a good application outlook. The 2,2′,6,6′-tetraoxazolinyl biphenyl ligand has the formula of: wherein, R1=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R2=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R3=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R4=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl.
摘要:
The present invention relates to a 5,5′-position linked 1,1′-biphenyl axis chiral ligand in chemical industry field. The present invention incorporates both the central chirality of oxazoline and the axial chirality of diphenyls. Such ligand can be used in various asymmetric reactions catalyzed by metal with high reactivity and stereoselectivity, and thus represents a good application outlook. The ligand of the present invention has the formula of: wherein: n=5, 6, 7, 8, 9, 10, 11 or 12; R1=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R2=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R3=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R4=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl.
摘要:
The present invention relates to a method for preparing 2,2′,6,6′-tetraoxazolinyl biphenyl ligand in chemical industry field. In the present invention, compound (III) is reacted with an activator that can activate the hydroxyl group selected from the group consisting of alkyl halosulfonium compound, aryl halosulfonium compound, phosphoryl chloride, phosphorus pentachloride, thionyl chloride and triphenyl phosphine, in the presence of alkali(s), to give the target product (IV), 2,2′,6,6′-tetraoxazolinyl biphenyl ligand. The ligand of the present invention can be used in various asymmetric reactions catalyzed by metals, with high reactivity and stereoselectivity, and thus represents a good application outlook. The 2,2′,6,6′-tetraoxazolinyl biphenyl ligand has the formula of: wherein, R1=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R2=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R3=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R4=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl.