Abstract:
The present invention relates to chiral compounds with two optically active phosphorus atoms, chiral transition metal catalysts which comprise these compounds as ligands, a process for preparing the P-chiral compounds and processes for asymmetric synthesis using the chiral transition metal catalysts. The present invention specifically relates to a process for preparing an optically active carbonyl compound by asymmetric hydrogenation of a prochiral α,β-unsaturated carbonyl compound with hydrogen in the presence of an optically active transition metal catalyst according to the invention. Yet more specifically, the present invention relates to a process for the asymmetric hydrogenation of citral, and also a process for preparing optically active menthol.
Abstract:
N2-phosphinyl formamidine compounds and N2-phosphinyl formamidine metal salt complexes are described. Methods for making N2-phosphinyl formamidine compounds and N2-phosphinyl formamidine metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl formamidine metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
Abstract:
A surfactant and a surfactant formulation comprising at least one ionic surfactant of the general formula R1—O-(D)n-(B)m-(A)l-XY−M+ where R1 is a linear or branched, saturated or unsaturated, aliphatic and/or aromatic hydrocarbon radical having 8 to 30 carbon atoms, A is ethyleneoxy, B is propyleneoxy, and D is butyleneoxy, l is from 0 to 99, m is from 0 to 99 and n is from 1 to 99, X is an alkyl or alkylene group having 0 to 10 carbon atoms, M+ is a cation, and Y− is selected from the group of sulfate groups, sulfonate groups, carboxylate groups and phosphate groups.
Abstract:
Provided are ligand compounds selected from among N-(diphenylphosphino)-1,1-diphenyl-N-(4-phenylbutan-2-yl)phosphinamine and N4,N4-bis(diphenylphosphino)-N1,N1-diethylpentane-1,4-diamine, a catalyst system for olefin oligomerization, and a method for olefin oligomerization using the same. The catalyst system for olefin oligomerization has excellent catalytic activity, and yet, exhibits high selectivity to 1-hexene or 1-octene, thus enabling more efficient preparation of alpha-olefin.
Abstract:
The present invention relates to a ligand compound, a catalyst system for ethylene oligomerization, and a method for ethylene oligomerization using the same. The catalyst system for ethylene oligomerization according to the present invention not only has excellent catalytic activity but also shows more improved liquid olefin selectivity, and enables more effective preparation of an alpha-olefin through the oligomerization of ethylene because it is particularly possible to control the selectivity to 1-hexene or 1-octene.
Abstract:
The present invention relates to a compound represented by Chemical Formula 1, a catalyst system for olefin oligomerization comprising the same, and a method of olefin oligomerization using the same.
Abstract:
The present invention relates to the use of aromatic boronic acid or borinic acid derivatives in organic electronic devices, in particular electroluminescent devices.
Abstract:
N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, N2-phosphinyl amidinate metal salt complexes are described. Methods for making N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes are also disclosed. Catalyst systems utilizing the N2-phosphinyl amidine metal salt complexes and N2-phosphinyl amidinate metal salt complexes are also disclosed along with the use of the N2-phosphinyl amidine compounds, N2-phosphinyl amidinates, N2-phosphinyl amidine metal salt complexes, and N2-phosphinyl amidinate metal salt complexes for the oligomerization and/or polymerization of olefins.
Abstract:
The present invention relates to the use of aromatic boronic acid or borinic acid derivatives in organic electronic devices, in particular electroluminescent devices.
Abstract:
The present invention relates to catalytic materials for hydrogenation or asymmetric hydrogenation. In particular, the invention relates to iron (II) complexes containing unsymmetrical tetradentate diphosphine (PNN′P) ligands with two different nitro gen donor groups useful for catalytic transfer hydrogenation or asymmetric transfer hydrogenation of ketones, aldehydes and imines.