Abstract:
An operator system and related methods (10) for sensing forces on a movable barrier (12) includes a motor (52), a trolley (30), and a trolley arm (34) having a first end slidably supported by the trolley (38) and a second end coupled to the movable barrier. The motor moves the trolley arm which in turn moves the movable barrier. A force detection mechanism (68) is coupled to the motor to determine a first component force value applied by the motor. A controller (54) receives the first component force value and determines a detected force value by scaling the first component force value with a second component force value derived from an angular position of the trolley arm's first end with respect to the trolley. The angular position of the trolley arm may be fixed or variable. An angle potentiometer (72) is coupled to the trolley arm to generate an angle signal for use as the second component force value when the trolley arm's angular position is allowed to vary.
Abstract:
A door operator for moving a door includes a motor for moving the door between opened and closed positions, an operator for controlling the operation of the motor, and a switch, such as a wired wall station or a remote transmitter, for enabling the operator to control operation of the motor. Pushing and releasing the switch results in the operator allowing the motor to apply a normal range of torque values, and wherein pushing and holding the switch results in the operator allowing the motor to apply a broader-than-normal range of torque values. An external safety device coupled to the operator may be used with the operator. If the external safety device is enabled and the door is closing, the motor allows application of a higher-than-normal range of torque values. The door operator may also take corrective action if excessive door speed is detected. But, this corrective action can be overridden if the switch is held closed for a predetermined time.
Abstract:
A motorized barrier operator system is disclosed that is adaptable to different safety configurations. The system is provided with a default configuration that may be changed upon detection of an optional safety configuration by the operator system. The changeover may be accomplished by actuation of a program button upon system power-up or in conjunction with program button actuation and the presence or absence of a jumper associated with a controller of the operator system.
Abstract:
An operator (32) with transmitter overwrite protection is used with a plurality of different transmitters (40, 42, 44). Each type of transmitter has at least one command button that when actuated generates a signal which includes at least a transmitter identifying code. The operator includes a receiver (170) capable of receiving the signal from any of the plurality of transmitters and a memory device (62) that has a plurality of storage locations (63a-f). A controller (60) is connected to the receiver and the controller stores each transmitter identifying code in a corresponding storage location. The controller overwrites one of the transmitter identifying codes in a corresponding storage location when a new transmitting code is learned if the plurality of storage locations are full, except for the transmitter identifying codes for one specific type of the plurality of transmitters. In the preferred embodiment, the specific type of transmitter is a wall station transmitter (42) with more than one function button. The different types of transmitters may be provided with corresponding levels of overwrite priority.
Abstract:
An operator and related method for adjusting an internal force setting for a motorized garage door operator is disclosed. The operator checks for the presence of a secondary entrapment safety feature and automatically increases a force threshold setting from a first value to a second value if the secondary entrapment safety feature is detected. If the safety feature is not detected or it is later disconnected, then the operator automatically sets the force threshold to a more sensitive value.
Abstract:
An operator and related method for adjusting an internal force setting for a motorized garage door operator is disclosed. The operator checks for the presence of a secondary entrapment safety feature and automatically increases a force threshold setting from a first value to a second value if the secondary entrapment safety feature is detected. If the safety feature is not detected or it is later disconnected, then the operator automatically sets the force threshold to a more sensitive value.
Abstract:
A modifiable transmitter is used with an operator to control a position of a barrier. The operator includes a controller for comparing radio frequency transmissions received with stored serial numbers so that the controller can move the barrier when a radio frequency transmission matches any one of the stored serial numbers. The transmitter includes a housing that carries an encoder. A function button is carried by the housing, wherein actuation of the button generates in a non-standard way a new serial number that can be learned by the controller to allow the modifiable transmitter to move the barrier by emitting the radio frequency transmission. A restricted access may also be activated to generate a new serial number.