Abstract:
The present invention provides a transmission signal generating method for a display device to compensate channel effect. The transmission signal generating method includes using a plurality of signal amplitudes and a first signal direction to generate a plurality of positive levels, using the plurality of signal amplitudes and a second signal direction to generate a plurality of negative levels, and using a plurality of signaling lines for transmission of the pluralities of negative and positive levels. A first positive level and a first negative level both have a minimum signal amplitude of the plurality of signal amplitudes. The amplitude difference of the first positive and negative levels is greater than an amplitude difference of any two neighboring levels of the plurality of negative levels and also the plurality of positive levels.
Abstract:
In order to mitigate electromagnetic interference (EMI), the present invention provides a circuit device for an electronic device including a signal generating unit, a phase adjusting unit and an output interface. The signal generating unit generates a plurality of in-phase signals. The phase adjusting unit is coupled to the signal generating unit and is used for adjusting the plurality of in-phase signals to generate a plurality of output signals, where all or some of the output signals have different phases. The output interface is coupled to the phase adjusting unit and is used for outputting the plurality of output signals to a plurality of signal processing units for image processing.
Abstract:
In order to mitigate electromagnetic interference (EMI), the present invention provides a circuit device for an electronic device including a signal generating unit, a phase adjusting unit and an output interface. The signal generating unit generates a plurality of in-phase signals. The phase adjusting unit is coupled to the signal generating unit and is used for adjusting the plurality of in-phase signals to generate a plurality of output signals, where all or some of the output signals have different phases. The output interface is coupled to the phase adjusting unit and is used for outputting the plurality of output signals to a plurality of signal processing units for image processing.
Abstract:
The present invention provides a transmission signal generating method for a display device to compensate channel effect. The transmission signal generating method includes using a plurality of signal amplitudes and a first signal direction to generate a plurality of positive levels, using the plurality of signal amplitudes and a second signal direction to generate a plurality of negative levels, and using a plurality of signaling lines for transmission of the pluralities of negative and positive levels. A first positive level and a first negative level both have a minimum signal amplitude of the plurality of signal amplitudes. The amplitude difference of the first positive and negative levels is greater than an amplitude difference of any two neighboring levels of the plurality of negative levels and also the plurality of positive levels.
Abstract:
In order to increase charge time of thin-film transistor (TFT) cells of a display device, the present invention provides a driving device, which includes a timing controller, a column driver module and at least a delay module. The timing controller is used for outputting at least a load signal. The column driver module is coupled to the timing controller and includes at least a column driver. The delay module can be installed in the column driver module or the timing controller, and is used for delaying the load signal for a predetermined time. The load signal is utilized to trigger the plurality of column drivers to output video data provided by a video data source and the video data corresponds to pixels on a panel of the display device. The driving device can use in a cascading, point-to-point or bus-type interfacing architecture to transmit the load signal.
Abstract:
A transmission device includes a first encoder, a plurality of current sources, a switch module, a second encoder, and a plurality of current enhanced circuits. The first encoder converts an input signal to a first control signal. The switch module is coupled between the plurality of current sources and a plurality of signal lines for controlling the connection of the current sources and the signal lines according to the first control signal to generate a current signal. The second encoder generates a second control signal according to the first control signal or the input signal. The plurality of current enhanced circuits is coupled to the plurality of current sources respectively. The plurality of current enhanced circuits provides an extra current in a predetermined duration to enhance the current signal.
Abstract:
A transmission device includes a first encoder, a plurality of current sources, a switch module, a second encoder, and a plurality of current enhanced circuits. The first encoder converts an input signal to a first control signal. The switch module is coupled between the plurality of current sources and a plurality of signal lines for controlling the connection of the current sources and the signal lines according to the first control signal to generate a current signal. The second encoder generates a second control signal according to the first control signal or the input signal. The plurality of current enhanced circuits is coupled to the plurality of current sources respectively. The plurality of current enhanced circuits provides an extra current in a predetermined duration to enhance the current signal.
Abstract:
A signal processing apparatus is provided. The signal processing apparatus includes an inner-code decoder, an outer-code decoder, and an error detection unit. The inner-code decoder decodes an input data stream to generate a first output data stream, wherein the input data stream is coded using a concatenated coding scheme including an outer coding and an inner coding. The outer-code decoder decodes the first output data stream to generate a second output data stream. The error detection unit performs an error detection upon the second output data stream to generate an error detection result. The decision logic sets error indication information of the second output data stream according to at least the error detection result.
Abstract:
A gain control method which includes setting a first initial gain value to a first variable gain amplifier; measuring a first power value corresponding to incoming signals; measuring a second power value corresponding to a target signal; and resetting the first initial gain value according to the first power value and the second power value. Another gain control method is also disclosed, which includes updating a gain value of a first variable gain amplifier by combining an adjustment value with the gain value according to a first tuning direction; obtaining a signal quality indicator; comparing the signal quality indicator with a reference signal quality indicator to generate a comparison result; and referring to the comparison result, further updating the gain value according to the first tuning direction or a second tuning direction opposite to the first tuning direction.
Abstract:
A data synchronization method for a transmitter of a display device includes utilizing a plurality of first signaling line sets to couple the transmitter and a plurality of receivers in a dedicated type manner, transmitting a synchronization signal to the plurality of receivers according to a transistor-to-transistor logic signal form, transmitting a synchronization start-up signal to the plurality of receivers via the plurality of first signaling line sets a first time later after the synchronization signal is transmitted, and then transmitting a data signal to the plurality of receivers via the plurality of first signaling line sets a second time later after the synchronization start-up signal is transmitted. The synchronization signal has a longer effective time than the synchronization start-up signal.