Abstract:
The invention provides a massage device, which comprises the shell and two symmetrical elastic massage parts, wherein the driving part and the guiding transmission part connected with the driving part are arranged in the shell. The guiding transmission part drives the two elastic massage parts to move towards or away from each other. The massage device of the invention is convenient to use, which could relieve the pressure and fatigue of people and makes them relaxed by massaging the body.
Abstract:
The preparation of novel fullerynes which are fullerenes (e.g. C60, C70, C80, etc.) that contain one or more alkyne functionalities and may contain additional functional groups such as hydroxyls, halogens, esters, haloesters, phenyl, oligo(ethylene glycol)s, perfluorinated alkyl chains, and the like. Two desired preparation routes are disclosed. The first one is the Fischer esterification in desired solvents using a special designed reactor in contrast to the heretofore initial Steglich reaction that results in side reactions and low yields. The second one uses acetylide Grignard reagents that have reduced nucleophilicity and higher stability in contrast to the use of heretofore initial lithium organyls or other Grignard reagents that would add to C60 with possible multi-additions in an uncontrollable manner.
Abstract:
A clathrate compound of formula (I): M8AxBy-x (I) wherein: M is an alkaline earth metal, a rare earth metal, an alkali metal, Cd, or a combination thereof, A is Ga, Al, In, Zn or a combination thereof; B is Ge, Si, Sn, Ni or a combination thereof; and 12≦x≦16, 40≦y≦43, x and y each is or is not an integer. Embodiments of the invention also include method of making and using the clathrate compound.
Abstract:
The preparation of novel fullerynes which are fullerenes (e.g. C60, C70, C80, etc.) that contain one or more alkyne functionalities and may contain additional functional groups such as hydroxyls, halogens, esters, haloesters, phenyl, oligo(ethylene glycol)s, perfluorinated alkyl chains, and the like. Two desired preparation routes are disclosed. The first one is the Fischer esterification in desired solvents using a special designed reactor in contrast to the heretofore initial Steglich reaction that results in side reactions and low yields. The second one uses acetylide Grignard reagents that have reduced nucleophilicity and higher stability in contrast to the use of heretofore initial lithium organyls or other Grignard reagents that would add to C60 with possible multi-additions in an uncontrollable manner.
Abstract:
A process of forming a nanopatterned substrate is provided. The process comprising the steps of first preparing a giant surfactant comprising a cage-like molecular nanoparticle head linked to a polymer chain tail through a chemical linkage. Next, using the giant surfactant, a thin film is formed. Next the thin film formed from the giant surfactant is annealed such that the giant surfactant self-assembles into a desired nanostructure. The desired nanostructure is comprised of periodic major domains and minor domains. Finally, at least some of either the major domain or the minor domain is selectively removed to form the nanopatterned substrate.
Abstract:
A process of forming a nanopatterned substrate is provided. The process comprising the steps of first preparing a giant surfactant comprising a cage-like molecular nanoparticle head linked to a polymer chain tail through a chemical linkage. Next, using the giant surfactant, a thin film is formed. Next the thin film formed from the giant surfactant is annealed such that the giant surfactant self-assembles into a desired nanostructure. The desired nanostructure is comprised of periodic major domains and minor domains. Finally, at least some of either the major domain or the minor domain is selectively removed to form the nanopatterned substrate.
Abstract:
A bulk heterojuction for a photovoltaic cell includes a polyhedral oligomeric silsesquioxane (POSS) functionalized electron acceptor or electron donor or both. The electron donor may be selected from conjugated polymers and the electron donor may be selected from fullerenes and fullerene derivatives.