摘要:
A multilayered reflective body which is thermoformable and capable of being fabricated into a number of parts while maintaining a uniform reflective appearance is provided. The reflective polymeric body is formed from at least two diverse polymeric materials which differ in refractive index and which are arranged in substantially parallel alternating layers. The polymeric body is reflective in appearance yet is transparent or, colored if a coloring agent is included, upon illumination from a back light source. The polymeric body has application in variety of areas such as in an automobile lighting lens which is reflective and thereby indiscernible yet transmissive upon exposure to a back light source. Additionally, various parts of consumer appliances, for example a refrigerator door, can be formed from the polymeric body.
摘要:
Optical constructions are disclosed. A disclosed optical construction includes first and second optical layers having first and second major surfaces that face each other and are separated by an air gap. The first and second surfaces are susceptible to physically contacting each other at a location in the air gap. The optical construction further includes an optical film that is disposed at the location to prevent the first and second major surfaces from contacting each other at the location. The optical film has an effective index of refraction that is not greater than about 1.3.
摘要:
Optical constructions use a low index of refraction layer (120) disposed between a low absorption layer (101) and a high absorption layer (103) to increase confinement of light to the low absorption region of the optical constructions. Low index layers can be used in optical constructions that have multi-tiered light confinement. In these constructions, a first tier of reflection is provided when light is reflected at the surface of a low index optical film which is disposed directly or indirectly on a light guide (110). A second tier of reflection occurs at the surface of a light redirecting film having appropriately oriented refractive structures.
摘要:
Lightguide is disclosed. The lightguide includes a light guiding layer for propagating light by total internal reflection, and an optical film that is disposed on the light guiding layer. The optical film includes a plurality of voids, an optical haze that is not less than about 30%, and a porosity that is not less than about 20%. Substantial portions of each two neighboring major surfaces in the lightguide are in physical contact with each other.
摘要:
Collimating light engines, methods of making collimating light engines, and articles incorporating collimating light engines are disclosed. In one aspect, a light source and circuitry can be disposed between a reflector and a reflective baffle to form a collimating light engine. The light source is at least partially obscured from view by the reflective baffle. Light emitted from the light source is partially collimated upon leaving the light engine. Light uniformity of the output surface of a backlight can be proved by disposing an array of the collimating light engines in the backlight
摘要:
Suspended optical film assemblies including a frame, an optical film, and an elastomeric film are disclosed. The elastomeric films include a first attachment region, a second attachment region, and a free region between the first and second attachment regions. The first attachment region is affixed to the frame; the second attachment region is affixed to the optical film, so that the free region is in tension and supports the optical film within the frame. The tension in the elastomeric film free region can help maintain flatness and reduce distortion in the optical film during environmental changes that influence dimensional changes in the frame, optical film, and elastomeric film.
摘要:
Light sources are disclosed. A disclosed light source includes an optically reflective cavity that includes an input port for receiving light and an output port for transmitting light, a lamp that is disposed at the input port, and an optical stack that is disposed at the output port. The optical stack includes a forward scattering optical diffuser that is disposed at the output port and has an optical haze that is not less than about 20%, and an optical film that is disposed on the optical diffuser. The optical film enhance total internal reflection at the interface between the optical film and the optical diffuser. The optical film has an index of refraction that is not greater than about 1.3 and an optical haze that is not greater than about 5%. The optical stack also includes a reflective polarizer layer that is disposed on the optical film. Substantial portions of each two neighboring major surfaces in the optical stack are in physical contact with each other.
摘要:
A lightguide (3690) is disclosed. The lightguide includes a light guiding layer (3610) for propagating light by total internal reflection, and an optical film (3640) that is disposed on the light guiding layer. The optical film includes a plurality of voids, an optical haze that is not less than about 30%, and a porosity that is not less than about 20%. Substantial portions of each two neighboring major surfaces (3614, 3642) in the lightguide are in physical contact with each other. The lightguide can be used as blacklight in a display system.
摘要:
Illumination devices having a partially transmissive front reflector, a back reflector, and a cavity between them are disclosed. At least one light injector including a baffle and a light source is disposed in the cavity. The light injector is capable of injecting partially collimated light into the cavity. The output area of the illumination device can be increased by disposing light injectors progressively within the cavity, without sacrificing uniformity of the light emitted through the output area.
摘要:
Direct-lit backlights and associated methods and components are disclosed in which a transflector that partially transmits and partially reflects incident light is shaped to form at least one concave structure facing a back reflector of the backlight. This provides at least one recycling cavity therebetween, the at least one recycling cavity substantially filling the output area of the backlight. At least one light source is disposed behind the output area to inject light into each cavity, and can be positioned in the recycling cavity or behind an aperture in the back reflector. The cavities are preferably shallow and wide, having a width-to-depth ratio of at least 5 or 10, and can provide uniform brightness and color at the output area with sparsely distributed light sources and in a thin profile backlight.