Abstract:
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.
Abstract:
A first engine fuel, for example diesel fuel, is reformed (preferably via steam reforming) to produce syngas for use as a second engine fuel, with the fuels then both being used in an internal combustion engine to perform Reactivity Controlled Compression Ignition (RCCI). The syngas is produced and supplied to the engine as a supercritical fluid, thereby avoiding the pumping losses that would occur if syngas was pressurized for supply/injection. The reforming is done by a reformer which is provided as a unit with the engine (e.g., both the engine and reformer are onboard a vehicle), thereby effectively allowing use of a single fuel for RCCI engine operation.
Abstract:
A compression ignition engine provides a main injector and a second pilot injector producing a spray passing over an igniter producing a pilot flame assisting in ignition of the main injector spray.
Abstract:
A first engine fuel, for example diesel fuel, is reformed (preferably via steam reforming) to produce syngas for use as a second engine fuel, with the fuels then both being used in an internal combustion engine to perform Reactivity Controlled Compression Ignition (RCCI). The syngas is produced and supplied to the engine as a supercritical fluid, thereby avoiding the pumping losses that would occur if syngas was pressurized for supply/injection. The reforming is done by a reformer which is provided as a unit with the engine (e.g., both the engine and reformer are onboard a vehicle), thereby effectively allowing use of a single fuel for RCCI engine operation.
Abstract:
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.