摘要:
Damage to the rim of a semiconductor wafer caused by etching processes is reduced by forming a rim of photoresist or other material around the outer edge of the wafer that has a thickness such that images projected on the rim are sufficiently out of focus that they do not develop, so that etching takes place only in the interior.
摘要:
A method for clearing an isolation collar from a first interior surface of a deep trench at a location above a storage capacitor while leaving the isolation collar at other surfaces of the deep trench. A barrier material is deposited above a node conductor of the storage capacitor. A layer of silicon is deposited over the barrier material. Dopant ions are implanted at an angle into the layer of deposited silicon within the deep trench, thereby leaving the deposited silicon unimplanted along one side of the deep trench. The unimplanted silicon is etched. The isolation collar is removed in locations previously covered by the unimplanted silicon, leaving the isolation collar in locations covered by the implanted silicon.
摘要:
The surface area of the walls of a trench formed in a substrate is increased. A barrier layer is formed on the walls of the trench such that the barrier layer is thinner near the corners of the trench and is thicker between the corners of the trench. A dopant is introduced into the substrate through the barrier layer to form higher doped regions in the substrate near the corners of the trench and lesser doped regions between the corners of the trench. The barrier layer is removed, and the walls of the trench are etched in a manner that etches the lesser doped regions of the substrate at a higher rate than the higher doped regions of the substrate to widen and lengthen the trench and to form rounded corners at the intersections of the walls of the trench.
摘要:
The surface area of the walls of a trench formed in a substrate is increased. A barrier layer is formed on the walls of the trench such that the barrier layer is thinner near the corners of the trench and is thicker between the corners of the trench. A dopant is introduced into the substrate through the barrier layer to form higher doped regions in the substrate near the corners of the trench and lesser doped regions between the corners of the trench. The barrier layer is removed, and the walls of the trench are etched in a manner that etches the lesser doped regions of the substrate at a higher rate than the higher doped regions of the substrate to widen and lengthen the trench and to form rounded corners at the intersections of the walls of the trench.
摘要:
A method for fabricating a trench capacitor with an insulation collar in a substrate, which is electrically connected to the substrate on one side via a buried contact, using a hard mask with a corresponding mask opening.
摘要:
A method for fabricating a trench capacitor in a semiconductor substrate with a low-impedance inner electrode for use in memory cells of memory devices. A separating layer is provided on a dielectric layer in the active region of the trench capacitor. Afterward, a low-impedance inner electrode made of metal or a metal compound is introduced both in the active region and in the collar region lined with an insulation layer.
摘要:
Fabricating a trench capacitor with an insulation collar in a substrate, which is electrically connected thereto on one side through a buried contact, in particular, for a semiconductor memory cell with a planar selection transistor in the substrate and connected through the buried contact, includes providing a trench using an opening in a hard mask, providing a capacitor dielectric in lower and central trench regions, the collar in central and upper trench regions, and a conductive filling at least as far as the insulation collar topside, completely filling the trench with a filling material, carrying out STI trench fabrication process, removing the filling material and sinking the filling to below the collar topside, forming an insulation region on one side above the collar; uncovering a connection region on a different side above the collar, and forming the buried contact by depositing and etching back a metallic filling.
摘要:
In a process for preparing a DT DRAM for sub 100 nm groundrules that normally require the formation of a collar after the bottle formation, the improvement of providing a collar first scheme by forming a high aspect ration PBL SiN barrier, comprising: a) providing a semiconductor structure after SiN node deposition and DT polysilicon fill; b) depositing a poly buffered LOCOS (PBL) Si liner; c) subjecting the PBL liner to oxidation to form a pad oxide and depositing a SiN barrier layer; d) depositing a silicon mask liner; e) subjecting the DT to high directional ion implantation (I/I) using a p-dopant; f) employing a selective wet etch of unimplanted Si with an etch stop on SiN; g) subjecting the product of step f) to a SiN wet etch with an etch stop on the pad oxide; h) affecting a Si liner etch with a stop on the pad oxide; i) oxidizing the PBL Si liner and affecting a barrier SiN strip; j) providing a DT polysilicon fill and performing a poly chemical mechanical polishing.
摘要:
The vertical DRAM capacitor with a buried LOCOS collar characterized by: a self-aligned bottle and gas phase doping; no consumption of silicon at the depth of the buried strap; no reduction of trench diameter; and a nitride layer to protect trench sidewalls during gas phase doping.
摘要:
A process for fabricating a single-sided semiconductor deep trench structure filled with polysilicon trench fill material includes the following steps. Form a thin film, silicon nitride, barrier layer over the trench fill material. Deposit a thin film of an amorphous silicon masking layer over the barrier layer. Perform an angled implant into portions of the amorphous silicon masking layer which are not in the shadow of the deep trench. Strip the undoped portions of the amorphous silicon masking layer from the deep trench. Then strip the newly exposed portions of barrier layer exposing a part of the trench fill polysilicon surface and leaving the doped, remainder of the amorphous silicon masking layer exposed. Counterdope the exposed part of the trench fill material. Oxidize exposed portions of the polysilicon trench fill material, and then strip the remainder of the masking layer.