摘要:
Methods and devices for discharging a pixel of an electronic display to be turned off are provided. In one example, a method may include supplying an activation signal to the pixel to activate the pixel. The method may also include supplying a data signal of substantially ground to a pixel electrode of the pixel. The method may include controlling a common electrode voltage of the pixel toward substantially ground. The method may also include removing the activation signal from the pixel after the common electrode voltage reaches substantially ground.
摘要:
Disclosed embodiments relate to a thin-film transistor (TFT) for use in a display device. The display device may include a liquid crystal display (LCD) panel having multiple pixels arranged in rows and column, with each row corresponding to a gate line and each column corresponding to a source line. Each of the pixels includes a pixel electrode and a TFT. The TFT may include a metal oxide semiconductor channel between a source and drain. For each TFT, holes may be formed in the gate line in a region beneath the source and/or the drain. The holes may be formed such that the source and drain only partially overlap the holes. The presence of the holes reduces the area of the gate line, which may reduce parasitic capacitance and improve loading. This may provide improved panel performance, which may reduce the appearance of certain visual artifacts.
摘要:
A pixel structure including a scan line, a data line, an active device, a pixel electrode, a capacitor electrode line, a semi-conductive pattern layer and at least one dielectric layer is provided. The active device is electrically connected to the scan line and the data line. The pixel electrode is electrically connected to the active device. The capacitor electrode line is located under the pixel electrode. A first storage capacitor is formed between the capacitor electrode line and the pixel electrode. The semi-conductive pattern layer is disposed between the capacitor electrode line and the pixel electrode, the pixel electrode is electrically connected to the semi-conductive pattern layer. A second storage capacitor is formed between the semi-conductive pattern layer and the capacitor electrode line. The dielectric layer is disposed between the capacitor electrode line and the pixel electrode and located between the semi-conductive pattern layer and the capacitor electrode line.
摘要:
A thin film transistor (TFT) and a pixel structure having the TFT are provided. The TFT is configured on a substrate. Besides, the TFT includes a gate, a gate insulation layer, a source, a channel layer, and a drain. The gate insulation layer covers the gate and the substrate. The source is configured on a portion of the gate insulation layer. The channel layer is configured on the gate insulation layer and covers a portion of the source located above the gate. The drain is configured on and electrically connected to the channel layer.
摘要:
A deep trench isolation structure including a deep trench disposed within a substrate to surround an active area on the substrate and a dielectric material filled within the deep trench. The deep trench comprises at least a corner in an arc shape layout or in a polygonal line shape layout. Accordingly, the deep trench isolation structure can be obtained in a better stress condition and with less process time for trench filling.
摘要:
A shift register including a plurality of stage circuits is provided. Each of the stage circuits has a shift circuit for receiving an input signal and providing an output signal. The output signal is obtained through the logic calculation and delaying of the input signal. Each of the stage circuits, except the first one, further includes a logic circuit used to produce at least one control signal according to the internal signals of the containing stage circuit, so as to replace at least one of the required clock signals during the operation of the corresponding shift circuit.
摘要:
An electronic device may have a display such as a liquid crystal display. The display may have a color filter layer and a thin-film transistor layer. An opaque masking layer may be formed on the color filter layer. An active portion of the display may contain an array of display pixels that are controlled by control signals that are provided over intersecting gate lines and data lines. In an inactive portion of the display, gate driver circuits may be used to generate gate line signals for the gate lines. Portions of the gate lines in the gate driver circuitry, power supply lines, and common electrode lines may be formed on the thin-film-transistor layer. These lines may be electromagnetically shielded using indium tin oxide shielding layers to prevent electric fields from inducing charge in the opaque masking layer and thereby causing color artifacts.
摘要:
An inspection system and method for inspecting the surface defects of the specimen is provided. The inspection system includes a laser focus module, a microscope objective module, an image pick-up module, and a process module. The laser focus module configured to emit laser beam on the specimen by a predetermined angle relative to a surface of the specimen, and to generate scattered light and reflected light when the laser beam irradiates on the surface defects of the specimen. The process module can calculate the real size of the defects by using the intensity information obtained from the image pick-up module and the microscope objective module or using the diameter information obtained from the reflected light image while the reflected light projects on a screen.
摘要:
The present application provides a touch-sensing display panel comprising a display panel and a touch-sensing device disposed above the display panel. The touch-sensing device comprises a plurality of select lines, a plurality of readout lines and a plurality of capacitive touch-sensing units arranged in array. Each of the capacitive touch-sensing units comprises a transistor and a touch-sensing pad, each of the transistors comprises a gate electrode electrically connected to one of the select lines, a source electrode electrically connected to a reference voltage, a drain electrode electrically connected to one of the readout lines, and a channel layer electrically coupled to the touch-sensing pad.
摘要:
The present invention discloses an OLED driving device, including a first switch transistor, a first transistor, a second switch transistor, a storage capacitor and a second transistor. The first switch transistor is used to receive a data signal, and output the data signal by the control of a first scan signal. The first transistor is used to compensate the effect of the threshold voltage of the second transistor. The second switch transistor is used to receive a voltage signal, and output the voltage signal by the control of a second scan signal. The storage capacitor is used to store a data voltage. The second transistor is electrically connected to the second switch transistor through the storage capacitor. The present invention can efficiently release the charges from the storage capacitor, enhance display effect, and change the input voltage level for adapting different operating voltages of integrate circuits.