Abstract:
An ink for use in 3D printing including at least one monomer, and an optional oligomer, and a photoinitiator, and the ink has a high glass transition temperature (Tg) and wide range of viscosity. The 3D ink composition, and embodiments, maintains a homogeneous and easily processed consistency when used in a multi-jet modeling printing process.
Abstract:
A color three-dimensional (3D) printing system includes (1) a solid build ink for each of a plurality of colors, each solid build ink includes (a) a solid acrylate in an amount from about 40 to about 70 percent by weight, (b) a non-curable wax in an amount from about 10 to about 45 percent by weight, (c) a curable wax in an amount from about 1 to about 15 percent by weight, (d) a photoinitiator, and (e) a colorant; each solid build ink has a curing speed adjusted by a ratio of the non-curable wax to curable wax such that the initial curing speed and final hardness of each solid build ink is approximately the same for each of the plurality of colors, and (2) a support material includes the non-curable wax used in each build ink, the support material providing a scaffold for deposition of each build ink.
Abstract:
A solid ink composition suitable for ink jet printing, including printing on coated paper substrates. In particular, the solid ink composition comprises a crystalline compound, an amorphous compound, and an inorganic nucleating agent, which provides for a robust and fast printing ink.
Abstract:
A system of inkjet inks suitable for additive manufacturing by inkjet printing includes a build ink and a support ink, the build ink and support ink have a differential color scheme and at least one of the build ink or the support ink includes a colorant. A method of additive manufacturing includes providing such a system of inkjet inks and printing via a multi-jet inkjet printing system an article with the build ink and the support ink, the article including a build material portion and a support material portion. A cartridge or kit for additive manufacturing by inkjet printing includes such a system of inkjet inks.
Abstract:
A phase change ink composition suitable for high speed ink jet printing, including printing on coated paper substrates. In embodiments, the phase change ink composition comprises both a crystalline compound and an amorphous compound, and optionally, a colorant, which provides for a robust ink. The crystalline compound is an amide and the amorphous compound is an ester of tartaric acid.
Abstract:
UV-curable interlayer compositions are provided. In embodiments, the interlayer composition comprises at least one aliphatic di(meth)acrylate monomer diluent having a dynamic viscosity at 25° C. of less than about 100 cps; at least one (meth)acrylate oligomer selected from epoxy (meth)acrylates, polyester (meth)acrylates, polyether (meth)acrylates, urethane (meth)acrylates and combinations thereof, the at least one(meth) acrylate oligomer having a glass transition temperature in the range of from about minus 10° C. to about 100° C. and a dynamic viscosity at 25° C. of less than about 3000 cps; and at least two photoinitiators. Multilayer structures formed using the compositions and related methods are also provided.
Abstract:
A phase change ink composition is provided comprising a UV-curable component, a crystalline component, and an amorphous component, wherein the addition of a UV-curable component imparts improved robustness over the ink that contains only crystalline and amorphous materials.
Abstract:
A printing system including an oil removal sub-system having an application device impregnated with an oil removal solution including a low carbon alcohol. The application device is operable downstream of a spreader of the printing system. The application device is adapted to contact a printed media after it contacts the spreader. The printing system results in oil-free prints suitable for subsequent finishing operations, in-line or off-line, such as overprint coating, lamination, and adhesive binding.