摘要:
Environmentally friendly thick film layers for a micro-fluid ejection head and micro-fluid ejection heads are disclosed. The environmentally friendly thick film layer includes a negative photoresist layer derived from a composition comprising a multi-functional epoxy compound, a low molecular weight polymeric difunctional epoxy compound, a monomeric difunctional epoxy compound, a methide-based photoacid generator that does not contain antimony, a chromophore and an aryl ketone solvent. Optionally the photoresist layer contains an adhesion enhancer. The negative photoresist layer is environmentally friendly and provides good resolution, well defined critical dimensions, straight side walls, and a large processing window.
摘要:
Environmentally friendly thick film layers for a micro-fluid ejection head and micro-fluid ejection heads are disclosed. The environmentally friendly thick film layer includes a negative photoresist layer derived from a composition comprising a multi-functional epoxy compound, a low molecular weight polymeric difunctional epoxy compound, a monomeric difunctional epoxy compound, a methide-based photoacid generator that does not contain antimony, a chromophore and an aryl ketone solvent. Optionally the photoresist layer contains an adhesion enhancer. The negative photoresist layer is environmentally friendly and provides good resolution, well defined critical dimensions, straight side walls, and a large processing window.
摘要:
Adhesive compositions, micro-fluid ejection devices, and methods for attaching micro-fluid ejection heads to devices. One such adhesive composition is provided for use in attaching a micro-fluid ejection head to a device, such as to reduce chip bowing and/or to decrease chip fragility upon curing of the adhesive. Such an exemplary composition may include one having from about 50.0 to about 95.0 percent by weight of at least one cross-linkable resin selected from the group consisting of epoxy resins, siloxane resins, urethane resins, and functionalized olefin resins; from about 0.1 to about 25.0 percent by weight of at least one thermal curative agent; and from about 0.0 to about 30.0 percent by weight filler, and exhibit a relatively low shear modulus upon curing (e.g., less than about 10.0 MPa at 25° C.).
摘要:
Nozzle members, such as for a micro-fluid ejection head, micro-fluid ejection heads, and a method for making the same. One such nozzle member includes a negative photoresist composition derived from a first di-functional epoxy compound, a relatively high molecular weight polyhydroxy ether, a photoacid generator devoid of aryl sulfonium salts, an adhesion enhancer, and an aliphatic ketone solvent. The nozzle member has a thickness ranging from about 10 microns to about 30 microns.
摘要:
Thick film layers for a micro-fluid ejection head, micro-fluid ejection heads, and methods for making micro-fluid ejection head and thick film layers. One such thick film layer is derived from a difunctional epoxy component having a weight average molecular weight ranging from about 2500 to about 4000 Daltons, a photoacid generator, an aryl ketone solvent, and an adhesion enhancing component. One such thick film layer has a cross-link density upon curing that increases the dimensional stability of the thick film layer sufficient to provide flow features therein having substantially vertical walls.
摘要:
The present disclosure relates to photoresist compositions suitable for thin layer photoimageable nozzle plates for micro-fluid ejection devices and methods of making and using such thin layer nozzle plates. The photoresist compositions may comprise a high-molecular weight phenoxy resin, a di-functional epoxy resin, and a multi-functional epoxy resin.
摘要:
Thick film layers for a micro-fluid ejection head, micro-fluid ejection heads, and methods for making micro-fluid ejection head and thick film layers. One such thick film layer is derived from a difunctional epoxy component having a weight average molecular weight ranging from about 2500 to about 4000 Daltons, a photoacid generator, an aryl ketone solvent, and an adhesion enhancing component. One such thick film layer has a cross-link density upon curing that increases the dimensional stability of the thick film layer sufficient to provide flow features therein having substantially vertical walls.
摘要:
Nozzle members, such as for a micro-fluid ejection head, micro-fluid ejection heads, and a method for making the same. One such nozzle member includes a negative photoresist composition derived from a first di-functional epoxy compound, a relatively high molecular weight polyhydroxy ether, a photoacid generator devoid of aryl sulfonium salts, an adhesion enhancer, and an aliphatic ketone solvent. The nozzle member has a thickness ranging from about 10 microns to about 30 microns.
摘要:
Thermally curable encapsulant compositions, micro-fluid ejection devices, and methods for protecting micro-fluid ejection heads. One such encapsulant composition may include one having from about 50.0 to about 95.0 percent by weight of at least one cross-linkable resin having a flexible backbone; from about 0.1 to about 20.0 percent by weight of at least one thermal curative agent; and from about 0.0 to about 50.0 percent by weight filler, and exhibits a relatively low shear modulus upon curing (e.g., less than about 10.0 MPa at 25° C.).
摘要:
Adhesive compositions, micro-fluid ejection devices, and methods for attaching micro-fluid ejection heads to devices. One such adhesive composition is provided for use in attaching a micro-fluid ejection head to a device, such as to reduce chip bowing and/or to decrease chip fragility upon curing of the adhesive. Such an exemplary composition may include one having from about 50.0 to about 95.0 percent by weight of at least one cross-linkable resin selected from the group consisting of epoxy resins, siloxane resins, urethane resins, and functionalized olefin resins; from about 0.1 to about 25.0 percent by weight of at least one thermal curative agent; and from about 0.0 to about 30.0 percent by weight filler, and exhibit a relatively low shear modulus upon curing (e.g., less than about 10.0 MPa at 25° C.).