摘要:
Systems and methods for controlling a micro electromechanical device using power actuation are disclosed. The disclosed micro electromechanical systems comprise at least one electrostatically actuatable micro electromechanical device and an actuation device. The micro electromechanical device comprises a first conductor and a second conductor having a moveable portion which in use may be attracted by the first conductor as a result of a predetermined actuation power. The actuation device comprises a high frequency signal generator for generating at least part of the actuation power by means of a predetermined high frequency signal with a frequency higher than the mechanical resonance frequency of the moveable portion of the micro electromechanical device.
摘要:
Systems and methods for controlling a micro electromechanical device using power actuation are disclosed. The disclosed micro electromechanical systems comprise at least one electrostatically actuatable micro electromechanical device and an actuation device. The micro electromechanical device comprises a first conductor and a second conductor having a moveable portion which in use may be attracted by the first conductor as a result of a predetermined actuation power. The actuation device comprises a high frequency signal generator for generating at least part of the actuation power by means of a predetermined high frequency signal with a frequency higher than the mechanical resonance frequency of the moveable portion of the micro electromechanical device.
摘要:
A MEMS switch in which contact force sufficient to make a contact having low contact resistance is maintained after contact-formation to maintain low contact resistance at the contact where the signal is transmitted in an “on” state. The MEMS switch includes a first electrode, a second electrode opposed to and separated from the first electrode, a third and a fourth electrodes, wherein electrical contact is made between the electrodes by electrostatic force generated between the electrodes, and a bump which can form the contact between the electrodes is provided on an electrode, and a gap is formed between the electrodes when the electrical contact is made between the electrodes.
摘要:
A micro electromechanical switchable capacitor is disclosed, comprising a substrate, a bottom electrode, a dielectric layer deposited on at least part of said bottom electrode, a conductive floating electrode deposited on at least part of said dielectric layer, an armature positioned proximate to the floating electrode and a first actuation area in order to stabilize the down state position of the armature. The device may furthermore comprise a second actuation area. The present invention provides shunt switches and series switches with actuation in zones attached to the floating electrode area or with relay actuation.
摘要:
One inventive aspect relates a variable capacitor comprising first and second electrically conductive electrodes, arranged above a support structure and spaced apart from each other and defining the capacitance of the capacitor. At least one of the electrodes comprises at least one bendable portion. The bendable portion(s) are actuated by a DC voltage difference which is applied over the electrodes to vary the capacitance. In preferred embodiments, the support structure comprises a layer of higher permittivity than the atmosphere surrounding the electrodes and the electrodes configure as an interdigitated structure upon actuation. Also disclosed is a 2-mask process for producing such capacitors.
摘要:
A DND device is disclosed. In one aspect, the device includes a nano-mirror (21), and an actuating module configured to move the nano-mirror in an upward and/or downward position. The actuating module has a cantilever mounted to a fixed structure, and at least one first electrode for moving the cantilever in an upward and/or downward position. Such DND devices may be arranged in a 2D array.
摘要:
A microelectromechanical (MEMS) resonator is disclosed that comprises a substrate and a resonator body suspended above the substrate by means of clamped-clamped beams, where each beam comprises two support legs with a common connection to the resonator body, and the resonator body is configured to resonate at an operating frequency. The MEMS resonator further comprises an excitation component configured to excite the resonator body to resonate at the operating frequency, where each beam is further configured to oscillate in a flexural mode at a flexural wavelength as a result of resonating at the operating frequency, and each leg is acoustically long with respect to the flexural wavelength.
摘要:
A MEMS switch is provided wherein contact force sufficient to make a contact having low contact resistance is maintained after contact-formation to maintain low contact resistance at the signal transmission contact in “on” state. Provided is a MEMS switch 100 including a first electrode 101, a second electrode 104 opposed to and separated from the first electrode, a third and a fourth electrodes 1021 and 1022, wherein electrical contact is made between the electrodes 101 and 104 by electrostatic force generated between the electrode 101 and the electrodes 1021, 1022, and a bump which can form the contact between the electrode 101 and the electrode 1021 and/or 1022 is provided on the electrode 101, and a gap is formed between the electrode 101 and the electrode 1021 and/or 1022 when the electrical contact is made, and control signals are input to the electrodes 1021 and 1022 independently.
摘要:
A system is disclosed that includes an oven and a micromechanical oscillator inside the oven configured to oscillate at a predetermined frequency at a predetermined temperature, where the predetermined frequency is based on a temperature dependency and at least one predetermined property. The system further includes an excitation mechanism configured to excite the micromechanical oscillator to oscillate at the predetermined frequency and a temperature control loop configured to detect a temperature of the micromechanical oscillator using resistive sensing, determine whether the temperature of the micromechanical oscillator is within a predetermined range of the predetermined temperature based on the temperature dependency and the at least one predetermined property in order to minimize frequency drift, and adapt the temperature of the micromechanical oscillator to remain within the predetermined range. The system further includes a frequency output configured to output the predetermined frequency of the micromechanical oscillator.
摘要:
An electrostatically actuatable micro electromechanical device is provided with enhanced reliability and lifetime. The electrostatically actuatable micro electromechanical device comprises: a substrate, a first conductor fixed to the top layer of the substrate, forming a fixed electrode, a second conductor fixed to the top layer of the substrate, and a substrate area. The second conductor is electrically isolated from the first conductor and comprises a moveable portion, suspended at a predetermined distance above the first conductor, the moveable portion forming a moveable electrode which approaches the fixed electrode upon applying an actuation voltage between the first and second conductors. The selected substrate surface area is defined as the orthogonal projection of the moveable portion on the substrate between the first and second conductors. In the substrate surface area at least one recess is provided in at least the top layer of the substrate.