Abstract:
A charge transport layer for an imaging member comprising a photogenerating layer, (1) a first charge transport layer comprised of a charge transport component and a resin binder, and thereover and in contact with the first layer (2) a second top charge transport layer comprised of a charge transport component, and a polymer of a styrene containing hindered phenol. The charge transport layer exhibits excellent wear resistance, excellent electrical performance, and outstanding print quality.
Abstract:
An imaging member including at least a support, a charge blocking layer, a charge imaging layer, and an interfacial adhesive layer including at least a copolyester-polycarbonate resin. A process for fabricating the imaging member is also disclosed.
Abstract:
A charge transport layer for an imaging member comprising a charge transport layer wherein the charge transport layer is coated in two passes and wherein the second pass comprises the application of a charge transport component and a hindered phenol covalently bonded to a polymer. The charge transport layer exhibits excellent wear resistance, excellent electrical performance, and excellent print quality.
Abstract:
A seamless flexible electrostatographic imaging member belt fabrication method comprising providing a flexible substrate support sheet, such as with a rectangular shape, placing a template on the support sheet, producing first desired features on a first portion of the substrate support sheet, including removing material from the substrate support sheet with first emissions, producing second desired features on a second portion of the substrate support sheet complementary to the first desired features, including removing material from the substrate support sheet with second emissions, overlapping the first and second desired features, bonding the first desired pattern with the second desired pattern to produce a seamed substrate support belt having substantially no added seam thickness and applying at least one coating over the substrate support belt.
Abstract:
An imaging member having a charge transport layer is provided. The charge transport layer includes a plurality of charge transport layers coated from solutions of similar or different compositions or concentrations, wherein the upper or additional transport layer(s) comprise a lower concentration of charge transport compound than the first (bottom) charge transport layer. The charge transport compound included in the first (bottom) charge transport layer may either be the same or different from that included in the additional charge transport layers. The charge transport compound in one or more of the layers is dissolved or molecularly dispersed in an electrically inactive polymer material to form a solid solution. In such a construction, the resulting charge transport layer exhibits enhanced cracking suppression, improves wear resistance, provides excellent imaging member electrical performance, and delivers improved print quality.
Abstract:
A seamless flexible electrostatographic imaging member belt fabrication method comprising providing a flexible substrate support sheet, producing first desired features on a first portion of the substrate support sheet, including removing material from the substrate support sheet with first emissions, producing second desired features on a second portion of the substrate support sheet complementary to the first desired features, including removing material from the substrate support sheet with second emissions, overlapping the first and second desired features, bonding the first desired pattern with the second desired pattern to produce a seamed belt and applying at least one coating the substrate support sheet.
Abstract:
A pattern fabrication apparatus includes a beam path for a beam to selectively bombard a target, a beam source producing the beam, a beam spreader that spreads the beam, a mask inducing a pattern on the beam, and a lens that can focus the beam onto the target. The apparatus can be used to manufacture seamless flexible electrostatographic imaging members by providing a flexible substrate support sheet, such as having a rectangular shape, producing first desired features on the support sheet, including removing material from the support sheet with first emissions, producing second desired features on the support sheet complementary to the first desired features, including removing material with second emissions, overlapping the first and second desired features, bonding the features to produce a seamed belt having substantially no added seam thickness, and applying at least one coating over the seamed belt.
Abstract:
A photoreceptor including: a charge transport layer; a top charge generating layer sensitive to a first light wavelength; a bottom charge generating layer sensitive to a second light wavelength; and a substrate, wherein the charge transport layer is positioned anywhere above the substrate, wherein the photoreceptor exhibits in response to exposure by the first light wavelength a first photodischarge curve having a first residual voltage and the photoreceptor exhibits in response to exposure by the second light wavelength a second photodischarge curve having a second residual voltage.
Abstract:
A photoconductive imaging member containing a photogenerating layer, a charge transport layer, or a plurality of charge transport layers, and which charge transport, especially the top charge transport layer contains a vinyl containing organic compound.
Abstract:
An imaging member having a charge transport layer with multiple regions is provided. The charge transport layer includes a plurality of charge transport layers coated from solutions of similar or different compositions or concentrations, wherein at least the top or uppermost transport layer comprises a lower concentration of charge transport compound than the first (bottom) charge transport layer. The charge transport compound included in the first (bottom) charge transport layer may either be of the same or different compounds from that included in the top or additional charge transport layer(s). The charge transport compound present in each layer may be dissolved or molecularly dispersed in an electrically inactive polymer material to form a solid solution. In such a construction, the resulting charge transport layer exhibits enhanced cracking suppression, improves wear resistance, provides excellent imaging member electrical performance, and delivers improved print quality.