摘要:
A method for removing dissolved contaminants from solution using a surface-activated crystalline titanium oxide product having a high adsorptive capacity and a high rate of adsorption with respect to dissolved contaminants, in particular, arsenate and arsenite. Preferably, the titanium oxide product includes crystalline anatase having primary crystallite diameters in the range of 1-30 nm. The surface-activated titanium oxide is combined with other filter media to further improve the removal of dissolved contaminants.
摘要:
A method for removing dissolved contaminants from solution using a surface-activated crystalline titanium oxide product having a high adsorptive capacity and a high rate of adsorption with respect to dissolved contaminants, in particular, arsenate and arsenite. Preferably, the titanium oxide product includes crystalline anatase having primary crystallite diameters in the range of 1-30 nm. The surface-activated titanium oxide is combined with other filter media to further improve the removal of dissolved contaminants.
摘要:
A method for producing a surface-activated crystalline titanium oxide product having a high adsorptive capacity and a high rate of adsorption with respect to dissolved contaminants includes the steps of preparing a titanium oxide precipitate from a mixture comprising a hydrolysable titanium compound and heating the precipitate at a temperature of less than 300° C., without calcining the precipitate. Preferably, the titanium oxide product includes crystalline anatase having primary crystallite diameters in the range of 1-30 nm. The surface-activated crystalline titanium oxide product is used in methods to remove dissolved inorganic contaminants from dilute aqueous streams by suspending the product in an aqueous stream or by filtering an aqueous stream through a bed of the product. In another method, a hydrolysable titanium compound is added to an aqueous stream so that titanium oxides form as a co-precipitate with dissolved contaminants within a bed of particulate material.
摘要:
A method for removing dissolved contaminants from solution using a surface-activated crystalline titanium oxide product having a high adsorptive capacity and a high rate of adsorption with respect to dissolved contaminants, in particular, arsenate and arsenite. Preferably, the titanium oxide product includes crystalline anatase having primary crystallite diameters in the range of 1-30 nm. The surface-activated titanium oxide is combined with other filter media to further improve the removal of dissolved contaminants.
摘要:
A method for removing dissolved contaminants from solution using a surface-activated crystalline titanium oxide product having a high adsorptive capacity and a high rate of adsorption with respect to dissolved contaminants, in particular, arsenate and arsenite. Preferably, the titanium oxide product includes crystalline anatase having primary crystallite diameters in the range of 1-30 nm. The surface-activated titanium oxide is combined with other filter media to further improve the removal of dissolved contaminants.
摘要:
Adsorbents and Methods used for effective removal or concentration or retention and recovery of harmful or valuable dissolved ions and compounds from aqueous systems using quantum size effect on large band gap semiconductors are provided. Invention provides methods for creating surface hydroxyl groups on surfaces of anatase, brookite and rutile which comprise methods of reducing dimensions of individual crystals to the sizes where surface hydroxyl groups are self generated via quantum size effects when they contacted with electrolytes. This invention also provides methods of preparation of quantum sized anatase, brookite and rutile. The invention also provides methods using quantum size effected anatase, brookite and rutile products for treatment of water, comprising rapid and high capacity adsorption of dissolved molecules and ions to the surface of said crystals via surface reaction process between said effect created hydroxyl groups with molecules and ions.
摘要:
Adsorbents and Methods used for effective removal or concentration or retention and recovery of harmful or valuable dissolved ions and compounds from aqueous systems using quantum size effect on large band gap semiconductors are provided. This invention provides methods for creating surface hydroxyl groups on surfaces of anatase, brookite and rutile large band gap semiconductors which comprise methods of reducing dimensions of individual crystals to the sizes where surface hydroxyl groups are self generated via quantum size effects when they contacted with electrolytes. This invention also provides methods of reproducible preparation of quantum sized effected anatase, brookite and rutile, which comprise in non-batch and continues process in which growth of said crystals is aborted. The invention also provides methods using quantum size effected anatase, brookite and rutile products for treatment of water, comprising rapid and high capacity adsorption of dissolved molecules and ions to the surface of said crystals via surface reaction process between said effect created hydroxyl groups with molecules and ions. Invention in general provides an effective means for treatment of water from harmful contaminants, especially As, P, U, transuranic elements, W, Mo, Cu, Pb, Cd, Co, Ni, Cr and others