Abstract:
A semiconductor module, a socket for the same, and a semiconductor module/socket assembly are disclosed. The semiconductor module includes a printed circuit board including a plurality of semiconductor devices, a plurality of insulating layers and a plurality of metal layers, the plurality of insulating layers and the plurality of metal layers are alternately stacked. Exposed portions of the metal layers are exposed to the outside of the semiconductor module at a first and a second ends of the printed circuit board. The first end and the second end are at opposite ends of the printed circuit board.
Abstract:
A semiconductor packaging device is provided. Semiconductor package groups, a side retainer wall, and a filling layer may be located on a base plate. The side retainer wall may be located around the semiconductor package groups. The filling layer may be located between the side retainer wall and the semiconductor package groups.
Abstract:
A sample is diagnosed with a genechip array by the present disclosure. The sample is automatically diagnosed by devices revealed in the present disclosure for a fast diagnosis having high accuracy.
Abstract:
Porous composites of mullite and cordierite are formed by firing an acicular mullite body in the presence of a magnesium source and a silicon source. In some variations of the process, the magnesium and silicon sources are present when the acicular mullite body is formed. In other variations, the magnesium source and the silicon source are applied to a previously-formed acicular mullite body. Surprisingly, the composites have coefficients of linear thermal expansion that are intermediate to those of mullite and cordierite alone, and have higher fracture strengths than cordierite at a similar porosity. Some of the cordierite forms at grain boundaries and/or points of intersection between mullite needles, rather than merely coating the needles. The presence of magnesium and silicon sources during acicular mullite formation does not significantly affect the ability to produce a highly porous network of mullite needles.
Abstract:
Example embodiments relate to a semiconductor package. The semiconductor package may include a mounting substrate, a semiconductor chip mounted to the mounting substrate, at least one passive component passing therethrough and mounted to the mounting substrate, and a cover covering the mounting substrate, the semiconductor chip and the at least one passive component.
Abstract:
A method of correcting distortion caused by fingerprint input sensors of heterogeneous fingerprint recognition systems. The method includes a first step of fabricating a measurement pattern for measuring resolutions of a fingerprint input sensor, a second step of measuring image resolutions of an image, acquired by the fingerprint input sensor, using the fabricated measurement pattern for predetermined locations and directions, a third step of designing control lines for compensating for the distortion caused by the fingerprint input sensor, based on the measured resolutions, a fourth step of obtaining average horizontal and vertical resolutions of the acquired image, a fifth step of modeling the control lines based on a ratio of the average horizontal resolution to the vertical average resolution, and a sixth step of compensating for the distortion of the acquired image based on results of the modeling.
Abstract:
A semiconductor device includes a semiconductor package, a circuit board and an interval maintaining member. The semiconductor package has a body and a lead protruded from the body. The circuit board has a first land electrically connected to the lead. The interval maintaining member is interposed between the circuit board and the body. The interval maintaining member maintains an interval between the lead and the first land. Thus, an interval between the lead and the land is uniformly maintained, so that a thermal and/or mechanical reliability of the semiconductor device is improved.
Abstract:
A semiconductor packaging device is provided. Semiconductor package groups, a side retainer wall, and a filling layer may be located on a base plate. The side retainer wall may be located around the semiconductor package groups. The filling layer may be located between the side retainer wall and the semiconductor package groups.
Abstract:
Highly porous acicular mullite bodies are prepared. A green body containing mullite precursors and a porogen is formed using a wet method. The green body is heated to sequentially remove any binder, the porogen and calcine it. The calcined body is mullitized. The process formed a calcined body that has excellent strength and can be handled easily. The mullitized body has very high porosity, small pores and has excellent fracture strength.
Abstract:
An organic additive is removed from a ceramic honeycomb by an improved method by contacting each end of the extruded honeycomb with a member that has a gas permeability no greater than the outer wall, the member essentially covering the ends and heating the honeycomb to a temperature sufficient to remove the organic additive.