Abstract:
A method for controlling a screen of a terminal, includes: determining a real-time state of the screen as a first state; generating a first electromagnetic signal corresponding to the first state, and sending the first electromagnetic signal to a metal structure on a surface of the terminal through a first human body communication component, such that the first electromagnetic signal is transmitted via a skin of a user; receiving, by the first human body communication component via the metal structure, a second electromagnetic signal sent by a wearable device associated with the terminal, the second electromagnetic signal being generated by the wearable device according to the first electromagnetic signal; and if the second electromagnetic signal includes state switching information regarding the screen, switching the real-time state of the screen from the first state to a second state.
Abstract:
The present disclosure provides a method for controlling a terminal device by using a headset wire connected to the terminal device. The method includes: recognizing a user's gesture based on a current detected in a specific region of the headset wire; acquiring control instruction corresponding to the user's gesture; and executing the control instruction. According to the present disclosure, when a current is detected in the specific region of the headset wire, a user's gesture is recognized based on the current, control instruction corresponding to the user's gesture is acquired, and the control instruction is executed to control the terminal. In the whole procedure, the user only needs to touch the specific region of the headset wire without using pressure button to produce current signal, thereby the operation of controlling the terminal device is convenient and fast.
Abstract:
A battery for electronic equipment includes: a rechargeable power supply; and a battery chip, wherein: the rechargeable power supply is configured to supply power to the electronic equipment; and the battery chip is configured to detect whether the rechargeable power supply has started to supply power to the electronic equipment and, if a detection result is that the rechargeable power supply has started to supply power to the electronic equipment, transmit a customized signal to the electronic equipment through a predetermined transmitting pin.
Abstract:
The present disclosure provides a method for controlling a terminal device by using a headset wire connected to the terminal device. The method includes: recognizing a user's gesture based on a current detected in a specific region of the headset wire; acquiring control instruction corresponding to the user's gesture; and executing the control instruction. According to the present disclosure, when a current is detected in the specific region of the headset wire, a user's gesture is recognized based on the current, control instruction corresponding to the user's gesture is acquired, and the control instruction is executed to control the terminal. In the whole procedure, the user only needs to touch the specific region of the headset wire without using pressure button to produce current signal, thereby the operation of controlling the terminal device is convenient and fast.
Abstract:
A battery for electronic equipment includes: a rechargeable power supply; and a battery chip, wherein: the rechargeable power supply is configured to supply power to the electronic equipment; and the battery chip is configured to detect whether the rechargeable power supply has started to supply power to the electronic equipment and, if a detection result is that the rechargeable power supply has started to supply power to the electronic equipment, transmit a customized signal to the electronic equipment through a predetermined transmitting pin.
Abstract:
A method, device and medium for fingerprint identification are provided. The method for fingerprint identification includes that: it is detected whether the number of damaged pixel units in a fingerprint identification sensor reaches a preset threshold value, and the damaged pixel units are physically damaged pixel units in the fingerprint identification sensor; and if the number of the damaged pixel units reaches the preset threshold value, identifying a fingerprint image acquired by the fingerprint identification sensor is stopped.