摘要:
Transcoding hierarchical B-frames with rate-distortion optimization in the DCT domain is described. More particularly, and in one aspect, input media content is transcoded from an original bit rate to a reduced bit rate. The input media content includes multiple hierarchical bidirectional frames (“B-frames”), multiple intra-frames (I-frames), and multiple predictive frames (P-frames). Each B-frame is open-loop transcoded in view of the reduced bit rate by optimizing texture and motion rate-distortion in the DCT domain to generate a respective portion of transcoded media content. The transcoded media content, which includes transcoded B-frames, I-frames, and P-frames, is provided to a user for viewing.
摘要:
Systems and methods for video coding using spatio-temporal texture synthesis are described. In one aspect, a video data coding pipeline portion of the codec removes texture blocks from the video data to generate coded video data. The removed texture blocks are selected based on an objective determination that each of the remove texture blocks can be synthesized from spatio-temporal neighboring samples during decoding operations. The objective determinations are made using local block-based motion information independent of global motion models. An indication of which texture blocks were removed is provided to a decoder in addition to the coded video data. Decoding logic of the codec decodes the video data using a standard decoding algorithm. The decoding logic also restores the removed texture blocks via spatio-temporal texture synthesis to generate synthesized video data. The decoded and synthesized video data is presented to a user.
摘要:
A motion-compensated video encoding scheme employs progressive fine-granularity layered coding to encode macroblocks of video data into frames having multiple layers, including a base layer of comparatively low quality video and multiple enhancement layers of increasingly higher quality video. Some of the enhancement layers in a current frame are predicted from different quality layers in reference frames. The video encoding scheme estimates drifting errors during the encoding and chooses a coding mode for each macroblock in the enhancement layer to maximize high coding efficiency while minimizing drifting errors.
摘要:
Systems and methods provide image compression based on parameter-assisted inpainting. In one implementation of an encoder, an image is partitioned into blocks and the blocks classified as smooth or unsmooth, based on the degree of visual edge content and chromatic variation in each block. Image content of the unsmooth blocks is compressed, while image content of the smooth blocks is summarized by parameters, but not compressed. The parameters, once obtained, may also be compressed. At a decoder, the compressed image content of the unsmooth blocks and the compressed parameters of the smooth blocks are each decompressed. Each smooth block is then reconstructed by inpainting, guided by the parameters in order to impart visual detail from the original image that cannot be implied from the image content of neighboring blocks that have been decoded.
摘要:
Learning-based image compression is described. In one implementation, an encoder possessing a first set of learned visual knowledge primitives excludes visual information from an image prior to compression. A decoder possessing an independently learned set of visual knowledge primitives synthesizes the excluded visual information into the image after decompression. The encoder and decoder are decoupled with respect to the information excluded at the encoder and the information synthesized at the decoder. This results in superior data compression since the information excluded at the encoder is dropped completely and not transferred to the decoder. Primitive visual elements synthesized at the decoder may be different than primitive visual elements dropped at the encoder, but the resulting reconstituted image is perceptually equivalent to the original image.
摘要:
A seamless bitstream switching schema is presented. The schema takes advantage of both the high coding efficiency of non-scalable bitstreams and the flexibility of scalable bitstreams. Small bandwidth fluctuations are accommodated by the scalability of the bitstreams, while large bandwidth fluctuations are tolerated by switching among scalable bitstreams. This seamless bitstream switching schema significantly improves the efficiency of scalable video coding over a broad range of bit rates.
摘要:
Disclosed herein are exemplary embodiments of methods, apparatus, and systems for performing content-adaptive deblocking to improve the visual quality of video images compressed using block-based motion-predictive video coding. For instance, in certain embodiments of the disclosed technology, edge information is obtained using global orientation energy edge detection (“OEED”) techniques on an initially deblocked image. OEED detection can provide a robust partition of local directional features (“LDFs”). For a local directional feature detected in the partition, a directional deblocking filter having an orientation corresponding to the orientation of the LDF can be used. The selected filter can have a filter orientation and activation thresholds that better preserve image details while reducing blocking artifacts. In certain embodiments, for a consecutive non-LDF region, extra smoothing can be imposed to suppress the visually severe blocking artifacts.
摘要:
The restoration of images by vector quantization utilizing visual patterns is disclosed. One disclosed embodiment comprises restoring detail in a transition region of an unrestored image, by first identifying the transition region and forming blurred visual pattern blocks. These blurred visual pattern blocks are compared to a pre-trained codebook, and a corresponding high-quality visual pattern blocks is obtained. The high-quality visual pattern block is then blended with the unrestored image to form a restored image.
摘要:
Learning-based image compression is described. In one implementation, an encoder possessing a first set of learned visual knowledge primitives excludes visual information from an image prior to compression. A decoder possessing an independently learned set of visual knowledge primitives synthesizes the excluded visual information into the image after decompression. The encoder and decoder are decoupled with respect to the information excluded at the encoder and the information synthesized at the decoder. This results in superior data compression since the information excluded at the encoder is dropped completely and not transferred to the decoder. Primitive visual elements synthesized at the decoder may be different than primitive visual elements dropped at the encoder, but the resulting reconstituted image is perceptually equivalent to the original image.
摘要:
Disclosed herein are exemplary embodiments of methods, apparatus, and systems for performing content-adaptive deblocking to improve the visual quality of video images compressed using block-based motion-predictive video coding. For instance, in certain embodiments of the disclosed technology, edge information is obtained using global orientation energy edge detection (“OEED”) techniques on an initially deblocked image. OEED detection can provide a robust partition of local directional features (“LDFs”). For a local directional feature detected in the partition, a directional deblocking filter having an orientation corresponding to the orientation of the LDF can be used. The selected filter can have a filter orientation and activation thresholds that better preserve image details while reducing blocking artifacts. In certain embodiments, for a consecutive non-LDF region, extra smoothing can be imposed to suppress the visually severe blocking artifacts.