Abstract:
A memory arrangement can store a matrix of matrix data elements specified as index-value pairs that indicate row and column indices and associated values. First split-and-merge circuitry is coupled between the memory arrangement and a first set of FIFO buffers for reading the matrix data elements from the memory arrangement and putting the matrix data elements in the first set of FIFO buffers based on column indices. A pairing circuit is configured to read vector data elements, pair the vector data elements with the matrix data elements, and put the paired matrix and vector data elements in a second set of FIFO buffers based on column indices. Second split-and-merge circuitry is configured to read paired matrix and vector data elements from the second set of FIFO buffers and put the paired matrix and vector data elements in a third set of FIFO buffers based on row indices.
Abstract:
The coherent accelerator processor interface (CAPI) provides a high-performance when using heterogeneous compute architectures, but CAPI is not compatible with the advanced extensible interface (AXI) which is used by many accelerators. The examples herein describe an AXI-CAPI adapter (e.g., a hardware architecture) that converts AXI signals to CAPI signals and vice versus. In one example, the AXI-CAPI adapter includes four modules: a low-level shim, a high-level shim, an AXI full module, and an AXI Lite module which are organized in a hierarchy of hardware elements. Each of the modules outputs can output a different version of the AXI signals using the hierarchical structure.
Abstract:
A circuit for processing data is described. The circuit comprises an input for receiving a request for implementing a key-value store data transaction; a plurality of memory interfaces associated with different memory types enabling access to a plurality of memory devices associated with a key-value store; and a memory management circuit controlling the routing of data by way of the plurality of memory interfaces based upon a data transfer criterion.
Abstract:
Disclosed approaches for multiplying a sparse matrix by dense a vector or matrix include first memory banks for storage of column indices, second memory banks for storage of row indices, and third memory banks for storage of non-zero values of a sparse matrix. A pairing circuit distributes an input stream of vector elements across first first-in-first-out (FIFO) buffers according to the buffered column indices. Multiplication circuitry multiplies vector elements output from the first FIFO buffers by corresponding ones of the non-zero values from the third memory banks, and stores products in second FIFO buffers. Row-aligner circuitry organize the products output from the second FIFO buffers into third FIFO buffers according to row indices in the second memory banks. Accumulation circuitry accumulates respective totals from products output from the third FIFO buffers.
Abstract:
Disclosed approaches for accessing data involve determining in a first stage of a pipelined processing circuit, hash values from keys in a data access request and determining in a second stage of the pipelined processing circuit and from a hash table, addresses associated with the hash values. In a third stage of the pipelined processing circuit, data are read at the addresses in a memory arrangement, and in a fourth stage of the pipelined processing circuit a subset of the data read from the memory arrangement is selected according to a query in the data access request. In a fifth stage of the pipelined processing circuit, the subset of the data read from the memory arrangement is merged into response data.
Abstract:
A circuit for controlling the operation of a memory system having different types of memory is described. The circuit comprises a first memory having a first type of memory element and having a first access time; a second memory having a second type of memory element and having a second access time, wherein the second type of memory element is different than the first type of memory element; a memory control circuit enabling access to the first memory and the second memory; a delay buffer coupled to the second memory to compensate for a difference in the first access time and the second access time; and a circuit for merging outputs of the first memory and delayed outputs of the second memory to generate ordered output data. A method of controlling the operation of a memory system is also disclosed.
Abstract:
A circuit for processing data is described. The circuit comprises an input for receiving a request for implementing a key-value store data transaction; a plurality of memory interfaces associated with different memory types enabling access to a plurality of memory devices associated with a key-value store; and a memory management circuit controlling the routing of data by way of the plurality of memory interfaces based upon a data transfer criterion.
Abstract:
A circuit for controlling the operation of a memory system having different types of memory is described. The circuit comprises a first memory having a first type of memory element and having a first access time; a second memory having a second type of memory element and having a second access time, wherein the second type of memory element is different than the first type of memory element; a memory control circuit enabling access to the first memory and the second memory; a delay buffer coupled to the second memory to compensate for a difference in the first access time and the second access time; and a circuit for merging outputs of the first memory and delayed outputs of the second memory to generate ordered output data. A method of controlling the operation of a memory system is also disclosed.