摘要:
An interventional medical device and manufacturing method thereof, the interventional medical device comprising a stent body (1); the stent body (1) is provided with a drug releasing structure on the surface, the drug in the drug releasing structure being a drug for inhibiting adventitial fibroblast proliferation. When the interventional medical device is implanted into a human body, the drug for inhibiting the adventitial fibroblast proliferation can be slowly released into vessel wall cells in contact with the stent body (1), thus inhibiting the proliferation of the adventitial fibroblasts, promoting vascular compensatory expansion, and reducing the incidence rate of instent restenosis.
摘要:
An interventional medical device and manufacturing method thereof. The interventional medical device comprises: a stent body (1); a surface of the stent body (1) being provided with a drug releasing structure (3), and drug in the drug releasing structure (3) being drug for suppressing proliferation of adventitial fibroblasts and a drug for suppressing proliferation of intimal and/or smooth muscle cells. In use, after interventional medical device is implanted into a human body, the drug for suppressing proliferation of adventitial fibroblasts carried thereon can promote the compensatory expansion of the vessel, and the drug for suppressing proliferation of intimal cells and/or smooth muscle cells carried thereon can suppress intimal proliferation of the vessel. The combination of the two kinds of drugs greatly reduces the occurrence rate of in-stent restenosis.
摘要:
An interventional medical device and manufacturing method thereof. The interventional medical device comprises: a stent body (1); a surface of the stent body (1) being provided with a drug releasing structure (3), and drug in the drug releasing structure (3) being drug for suppressing proliferation of adventitial fibroblasts and a drug for suppressing proliferation of intimal and/or smooth muscle cells. In use, after interventional medical device is implanted into a human body, the drug for suppressing proliferation of adventitial fibroblasts carried thereon can promote the compensatory expansion of the vessel, and the drug for suppressing proliferation of intimal cells and/or smooth muscle cells carried thereon can suppress intimal proliferation of the vessel. The combination of the two kinds of drugs greatly reduces the occurrence rate of in-stent restenosis.
摘要:
The present invention discloses an interventional medical device and methods of making the same. At least one coating layer is disposed on the outer surface of the interventional medical device and the material of the outmost layer of the coating layer is a sulfonate group-containing polymer. In the present invention, the material of the outmost layer of the interventional medical device is a sulfonate group-containing polymer. The polymer is endowed with a same surface property as that of heparin in addition to appropriate hydrophilicity due to the presence of the sulfonate group. After the interventional medical device is implanted into the human body, a hydrophilic surface is formed on the outer surface of the interventional medical device which is also negatively charged in the body fluid. Therefore, cells can easily adhere and grow on the outer surface thereof as a result of the enhanced cell compatibility. Furthermore, due to a surface property that is the same as that of heparin, the material is provided with excellent anticoagulant properties which inhibit the thrombosis and lower down the incidence rate of post-operational complications.
摘要:
The present invention discloses an interventional medical device and methods of making the same. At least one coating layer is disposed on the outer surface of the interventional medical device and the material of the outmost layer of the coating layer is a sulfonate group-containing polymer. In the present invention, the material of the outmost layer of the interventional medical device is a sulfonate group-containing polymer. The polymer is endowed with a same surface property as that of heparin in addition to appropriate hydrophilicity due to the presence of the sulfonate group. After the interventional medical device is implanted into the human body, a hydrophilic surface is formed on the outer surface of the interventional medical device which is also negatively charged in the body fluid. Therefore, cells can easily adhere and grow on the outer surface thereof as a result of the enhanced cell compatibility. Furthermore, due to a surface property that is the same as that of heparin, the material is provided with excellent anticoagulant properties which inhibit the thrombosis and lower down the incidence rate of post-operational complications.
摘要:
An invasive cardiac valve comprises a tubular stent (1) and a valve (2). One end of the tubular stent (1) is of a frusto-conical structure, the other end is wide open, and the diameter of the open end is greater than the diameter of the frusto-conical end. The valve (2) is attached to the frusto-conical end of the tubular stent (1); and a delivery and retrieval hole (4) of the cardiac valve is provided at the top of the open end of the tubular stent (1). Because the diameter of the open end is greater than the diameter of the frusto-conical end, the cardiac valve can be effectively fixed in a position of aortic annulus to prevent the cardiac valve displacement caused by the impact of the blood flow. Because the valve (2) is attached to the frusto-conical end of the tubular stent (1), the valve (2) can totally avoid the left and right coronary ostia and does not affect the haemodynamics of the coronary artery. Because a delivery and retrieval hole (4) of the cardiac valve is provided at the top of the open end of the tubular stent (1), the cardiac valve can be retrieved and reset at any time by handle control if it is found to be placed in an improper position during the release process.
摘要:
An invasive cardiac valve comprises a tubular stent (1) and a valve (2). One end of the tubular stent (1) is of a frusto-conical structure, the other end is wide open, and the diameter of the open end is greater than the diameter of the frusto-conical end. The valve (2) is attached to the frusto-conical end of the tubular stent (1); and a delivery and retrieval hole (4) of the cardiac valve is provided at the top of the open end of the tubular stent (1). Because the diameter of the open end is greater than the diameter of the frusto-conical end, the cardiac valve can be effectively fixed in a position of aortic annulus to prevent the cardiac valve displacement caused by the impact of the blood flow. Because the valve (2) is attached to the frusto-conical end of the tubular stent (1), the valve (2) can totally avoid the left and right coronary ostia and does not affect the haemodynamics of the coronary artery. Because a delivery and retrieval hole (4) of the cardiac valve is provided at the top of the open end of the tubular stent (1), the cardiac valve can be retrieved and reset at any time by handle control if it is found to be placed in an improper position during the release process.
摘要:
The present invention relates to compositions and methods of treating a disease, such as diabetes, by implanting encapsulated biological material into a patient in need of treatment. This invention provides for the placement of biocompatible coating materials around biological materials using photopolymerization while maintaining the pre-encapsulation status of the biological materials. Several methods are presented to accomplish coating several different types of biological materials. The coatings can be placed directly onto the surface of the biological materials or onto the surface of other coating materials that hold the biological materials. The components of the polymerization reactions that produce the coatings can include natural and synthetic polymers, macromers, accelerants, cocatalysts, photoinitiators, and radiation. This invention also provides methods of utilizing these encapsulated biological materials to treat different human and animal diseases or disorders by implanting them into several areas in the body including the subcutaneous site. The coating materials can be manipulated to provide different degrees of biocompatibility, protein diffusivity characteristics, strength, and biodegradability to optimize the delivery of biological materials from the encapsulated implant to the host recipient while protecting the encapsulated biological materials from destruction by the host inflammatory and immune protective mechanisms without requiring long-term anti-inflammatory or anti-immune treatment of the host.
摘要:
Methods of applying biocompatible coating materials around biological materials using photopolymerization while maintaining the pre-encapsulation status of the biological materials are disclosed. The coatings can be placed directly onto the surface of the biological materials or onto the surface of other coating materials that hold the biological materials. The components of the polymerization reactions that produce the coatings can include natural and synthetic polymers, macromers, accelerants, cocatalysts, photoinitiators, and radiation. Methods of utilizing these encapsulated biological materials to treat different human and animal diseases or disorders by implanting them into several areas in the body including the subcutaneous site are also disclosed. The coating materials can be manipulated to provide different degrees of biocompatibility, protein diffusivity characteristics, strength, and biodegradability to optimize the delivery of biological materials from the encapsulated implant to the host recipient while protecting the encapsulated biological materials from destruction by the host inflammatory and immune protective mechanisms without requiring long-term anti-inflammatory or anti-immune treatment of the host.