摘要:
Electrical stimulation systems and methods are configured to deliver remote electrical stimulation to a patient. Stimulation waveforms are employed that are designed to penetrate tissue within a patient to transmit the electrical stimulation from an origination site to a remote delivery site. The waveforms are defined by a series of pulses, which are characterized by a number of parameters, including pulse width, pulse frequency, constant voltage or constant current amplitude, and electrode polarity (anode or cathode). The waveforms include an envelope electrical stimulation pulse train including charge balanced pulses modulated by a high frequency carrier signal configured to deeply penetrate patient tissue to carry the electrical pulse train from an origination site to a remote delivery site.
摘要:
A system and method of locating the desired telemetry location for an implantable medical device includes a programmer having a patient interface to allow activation of the programmer, a bi-directional communications link between the programmer and the implantable device, an automatic gain control for determining the gain setting for a received signal from the implantable device, and an audio transducer for emitting audio signals to the patient. The bi-directional communications link enables the programmer to locate the desired telemetry location for the implantable device, the automatic gain control provides for optimum telemetry communication between the programmer and the implantable device, and the audio transducer generates audio signals indicative of the telemetry communication between the programmer and the implantable device.
摘要:
Techniques for detecting a value of a sensed patient parameter, and automatically delivering therapy to a patient according to therapy information previously associated with the detected value, are described. In exemplary embodiments, a medical device receives a therapy adjustment from the patient. In response to the adjustment, the medical device associates a sensed value of a patient parameter with therapy information determined based on the adjustment. Whenever the parameter value is subsequently detected, the medical device delivers therapy according to the associated therapy information. In this manner, the medical device may “learn” to automatically adjust therapy in the manner desired by the patient as the sensed parameter of the patient changes. Exemplary patient parameters that may be sensed for performance of the described techniques include posture, activity, heart rate, electromyography (EMG), an electroencephalogram (EEG), an electrocardiogram (ECG), temperature, respiration rate, and pH.
摘要:
In general, the techniques of this disclosure are directed to communication between an implantable medical device (IMD) and an external device. In some examples, the external device transmits a signal that includes a communication key. One or more sensors of the IMD sense the signal that includes the communication key, and the IMD uses the communication key for coding the communication between the IMD and the external device. The one or more sensors that sensed the signal may also sense one or more patient characteristics.
摘要:
An implantable drug infusion pump for delivering drug therapy to a patient and which also permits a patient to deliver or self-administer an additional bolus, reduces the likelihood of over dosage or under dosage by drug dosage characteristic limitations programmed into a microprocessor memory. The dose limits define the maximum and minimum amount of drug to be delivered per unit time or otherwise, reducing the likelihood that a patient may inadvertently or deliberately interfere with a treatment regimen.
摘要:
Techniques for detecting a value of a sensed patient parameter, and automatically delivering therapy to a patient according to therapy information previously associated with the detected value, are described. In exemplary embodiments, a medical device receives a therapy adjustment from the patient. In response to the adjustment, the medical device associates a sensed value of a patient parameter with therapy information determined based on the adjustment. Whenever the parameter value is subsequently detected, the medical device delivers therapy according to the associated therapy information. In this manner, the medical device may “learn” to automatically adjust therapy in the manner desired by the patient as the sensed parameter of the patient changes. Exemplary patient parameters that may be sensed for performance of the described techniques include posture, activity, heart rate, electromyography (EMG), an electroencephalogram (EEG), an electrocardiogram (ECG), temperature, respiration rate, and pH.
摘要:
The disclosure provides a system that displays an indicator of patient posture state that changes according to posture state data. The posture state data may be transmitted from a medical device, for example, in or near real-time. In some examples, the disclosure relates to a method comprising receiving posture state data for a patient from a medical device; and presenting an indicator indicative of two or more of posture states based on the received posture state data, wherein each posture state of the two or more posture states is determined based on different detection criteria.
摘要:
The disclosure provides a system that displays an indicator of patient posture state that changes according to posture state data. The posture state data may be transmitted from a medical device, for example, in or near real-time. In some examples, the disclosure relates to a method comprising receiving posture state data for a patient from a medical device; and presenting an indicator indicative of two or more of posture states based on the received posture state data, wherein each posture state of the two or more posture states is determined based on different detection criteria.
摘要:
A wearable ambulatory data recorder that senses physiological parameters of a patient, and stores physiological parameter data for later retrieval, as well as techniques for using such a wearable ambulatory data recorder, are described. The data recorder includes one or more sensors located on or within a housing. The data recorder may include an adhesive layer for attachment to a patient. In some embodiments, the housing may be within a patch, e.g., bandage, which includes the adhesive layer. The housing may be waterproof. Features of the data recorder such as size, waterproofness, and inclusion of an adhesive may allow the data recorder to be unobtrusively worn by a patient during a variety of daily activities. The data recorder may be for single use and thereafter disposable.