摘要:
Embodiments of systems and methods for managing a constant buffer with rendering context specific data in multithreaded parallel computational GPU core are disclosed. Briefly described, one method embodiment, among others, comprises responsive to a first shader operation, receiving at a constant buffer a first group of constants corresponding to a first rendering context, and responsive to a second shader operation, receiving at the constant buffer a second group of constants corresponding to a second context without flushing the first group.
摘要:
Embodiments of the present disclosure are directed to graphics processing systems, comprising: a plurality of execution units, wherein one of the execution units is configurable to process a thread corresponding to a rendering context, wherein the rendering context comprises a plurality of constants with a priority level; a constant buffer configurable to store the constants of the rendering context into a plurality of slot in a physical storage space; and an execution unit control unit configurable to assign the thread to one of the execution units; a constant buffer control unit providing a translation table for the rendering context to map the corresponding constants into the slots of the physical storage space. Comparable methods are also disclosed.
摘要:
Embodiments of systems and methods for managing a constant buffer with rendering context specific data in multithreaded parallel computational GPU core are disclosed. Briefly described, one method embodiment, among others, comprises responsive to a first shader operation, receiving at a constant buffer a first group of constants corresponding to a first rendering context, and responsive to a second shader operation, receiving at the constant buffer a second group of constants corresponding to a second context without flushing the first group.
摘要:
Embodiments of the present disclosure are directed to graphics processing systems, comprising: a plurality of execution units, wherein one of the execution units is configurable to process a thread corresponding to a rendering context, wherein the rendering context comprises a plurality of constants with a priority level; a constant buffer configurable to store the constants of the rendering context into a plurality of slot in a physical storage space; and an execution unit control unit configurable to assign the thread to one of the execution units; a constant buffer control unit providing a translation table for the rendering context to map the corresponding constants into the slots of the physical storage space. Comparable methods are also disclosed.
摘要:
A programmable graphics processing unit (GPU) includes a first shader stage configured to receive slice data from a frame buffer and perform variable length decoding (VLD), wherein the first shader stage outputs data to a first buffer within the frame buffer; a second shader stage configured to receive the output data from the first shader stage and perform transformation and motion compensation on the slice data, wherein the second shader stage outputs decoded slice data to a second buffer within the frame buffer; a third shader stage configured to receive the decoded slice data and perform in-loop deblocking filtering (IDF) on the frame buffer; a fourth shader stage configured to perform post-processing on the frame buffer; and a scheduler configured to schedule execution of the shader stages, the scheduler comprising a plurality of counter registers; wherein execution of the shader stages is synchronized utilizing the counter registers.
摘要:
A multi-shader system in a programmable graphics processing unit (GPU) for processing video data, includes a first shader stage configured to receive slice data from a frame buffer and perform variable length decoding (VLD), wherein the first shader stage outputs data to a first buffer within the frame buffer; a second shader stage configured to receive the output data from the first shader stage and perform transformation and motion compensation on the slice data, wherein the second shader stage outputs decoded slice data to a second buffer within the frame buffer; a third shader stage configured to receive the decoded slice data and perform in-loop deblocking filtering (IDF) on the frame buffer; a fourth shader stage configured to perform post-processing on the frame buffer; and a scheduler configured to schedule execution of the shader stages, the scheduler comprising a plurality of counter registers; wherein execution of the shader stages is synchronized utilizing the counter registers.
摘要:
Disclosed herein is a graphics-processing unit (GPU) having an internal memory for general-purpose use and applications thereof. Such a GPU includes a first internal memory, an execution unit coupled to the first internal memory, and an interface configured to couple the first internal memory to a second internal memory of an other processing unit. The first internal memory may comprise a stacked dynamic random access memory (DRAM) or an embedded DRAM. The interface may be further configured to couple the first internal memory to a display device. The GPU may also include another interface configured to couple the first internal memory to a central processing unit. In addition, the GPU may be embodied in software and/or included in a computing system.
摘要:
Included are embodiments of systems and methods for processing metacommands. In at least one exemplary embodiment a Graphics Processing Unit (GPU) includes a metaprocessor configured to process at least one context register, the metaprocessor including context management logic and a metaprocessor control register block coupled to the metaprocessor, the metaprocessor control register block configured to receive metaprocessor configuration data, the metaprocessor control register block further configured to define metacommand execution logic block behavior. Some embodiments include a Bus Interface Unit (BIU) configured to provide the access from a system processor to the metaprocessor and a GPU command stream processor configured to fetch a current context command stream and send commands for execution to a GPU pipeline and metaprocessor.
摘要:
Systems and method for providing shared attribute evaluation circuits in a graphics processing unit are provided. One embodiment can be described as a system for evaluating attributes in a graphics processing unit having a plurality of processing stages. The system can include an evaluation block, configured to process a plurality of attributes corresponding to a plurality of pixels and a plurality of FIFO buffers, each configured between one of the plurality of processing stages and the evaluation block. An embodiment can further include a shared buffer, configured to store the plurality of attributes or pointers during the attribute processing and processing priority logic, configured to determine a plurality of priorities corresponding to the plurality of attributes.
摘要:
Provided are methods and systems for reducing memory bandwidth usage in a common buffer, multiple FIFO computing environment. The multiple FIFO's are arranged in coordination with serial processing units, such as in a pipeline processing environment. The multiple FIFO's contain pointers to entry addresses in a common buffer. Each subsequent FIFO receives only pointers that correspond to data that has not been rejected by the corresponding processing unit. Rejected pointers are moved to a free list for reallocation to later data.